Skip to main content
Log in

Nuclear magnetic resonance methods to characterize lipid-protein interactions at membrane surfaces

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Specific molecular interactions that determine many of the functions of a biomembrane have a high probability of occurring at the surface of that membrane. However, unlike their hydrophobic core, the polar-apolar interface of biomembranes has been somewhat neglected experimentally. Reasons for this are that the chemical heterogeneity encountered makes a simple description difficult and that probing the membrane surface often involves a perturbation of those very interactions being studied. Classical methods for obtaining structural information about biomolecules, including X-ray diffraction, electron microscopy, and more recently high-resolution 2D nuclear magnetic resonance techniques are inappropriate for all but the simplest of membrane problems. In an effort to throw light on how membrane surfaces are organized, both architecturally and dynamically, protons in lipids and proteins have been selectively replaced by deuterons and the resultant deuterium NMR spectrum analyzed to give structural and dynamic information about the molecular associations between a range of membrane components. In principle, lipids, proteins, and oligosaccharides can be studied by this method and the information gained related to biochemical integrity and function. With one or two notable exceptions, the majority of the studies reported so far have been on model systems. A comprehensive review of the literature will not be presented here. However, protein-lipid molecular specificity in membranes, peptide-induced lateral separation, and the ionization behavior of deuterated phospholipids and peripheral proteins will all be demonstrated predominantly using deuterium NMR methods. Some suggestions for future work are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

csa:

chemical shift anisotropy (ppm)

ΔνQ :

quadrupolar splitting (Hz)

NMR:

nuclear magnetic resonance

ESR:

electron spin resonance

νex :

exchange rate (s−1)

τc :

correlation time (s)

DMPC:

1,2-dimyristoyl-sn-glycerol(3)phosphocholine

PE:

1,2-diacyl-sn-glycerol(3)phosphoethanolamine

PS:

1,2-diacyl-sn-glycerol(3)phosphoserine

PG:

1,2-diacyl-sn-glycerol(3)phosphoglycerol

References

  • Abney, J. R., and Owicki, J. C. (1985).Progress in Protein-Lipid Interactions (Watts, A., and de Pont, J. J. H. H. M., eds.), Elsevier, Amsterdam, Vol. 1, Chapter 1.

    Google Scholar 

  • Akutsu, H., and Seelig, J. (1981).Biochemistry 20, 7366–7373.

    Google Scholar 

  • Allegrini, P. R., Plushke, G., and Seelig, J. (1984).Biochemistry 23, 6452–6458.

    Google Scholar 

  • Allegrini, P. R., van Scharrenburg, G. J. M., Slotboom, A. J., de Haas, G. H., and Seelig, J. (1985).Biochemistry 24, 3268–3273.

    Google Scholar 

  • Bloom, M. (1979).Can. J. Phys. 57, 2227–2230.

    Google Scholar 

  • Bloom, M., and Smith, I. C. P. (1985). InProgress in Protein-Lipid Interactions (Watts, A., and De Pont, J. J. H. H. M., eds.), Elsevier, Amsterdam, Vol. 1, Chapter 2.

    Google Scholar 

  • Boggs, J. M., and Moscarello, M. A. (1978).J. Membr. Biol. 39, 75–96.

    Google Scholar 

  • Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D. (1982). InLipid-Protein Interactions (Jost, P. C., and Griffith, O. H., eds.), Wiley-Interscience, New York, Vol. 2, Chapter 1.

    Google Scholar 

  • Bowers, J. L., Smith, R. L., Coretsopoulos, C., Kunwar, A. C., Keniry, M., Shan, X., Gutowsky, H. S., and Oldfield, E. (1986). InProgress in Protein-Lipid Interactions (Watts, A., and De Pont, J. J. H. H. M., eds.), Elsevier, Amsterdam, Vol. 2, Chapter 3.

    Google Scholar 

  • Brown, L. R., and Wüthrich, K. (1977).Biochim. Biophys. Acta 468, 389–410.

    Google Scholar 

  • Brown, M. F., Seelig, J., and Häberlen, U. (1979).J. Chem. Phys. 70, 5045–5053.

    Google Scholar 

  • Burnell, E. E., Cullis, P. R., and de Kruijff, B. (1980).Biochim. Biophys. Acta 603, 63–69.

    Google Scholar 

  • Cevc, G., Watts, A., and Marsh, D. (1980).FEBS Lett. 120, 267–270.

    Google Scholar 

  • Cross, T. A., and Opella, S. J. (1985).J. Mol. Biol. 182, 367–387.

    Google Scholar 

  • Cullis, P. R., Verkleij, A. J., and Ververgaert, P. H. J. T. (1978).Biochim. Biophys. Acta 513, 11–20.

    Google Scholar 

  • Cullis, P. R., De Kruijff, B., Hope, M. J., Nayar, R., Rietveld, A., and Verkleij, A. J. (1980).Biochim. Biophys. Acta 600, 625–635.

    Google Scholar 

  • Dasseux, J.-L., Faucon, J.-F., Lafleur, M., Pezolet, M., and Dufourcq, J. (1984).Biochim. Biophys. Acta 510, 75–86.

    Google Scholar 

  • Datema, K. P., Pauls, K. P., and Bloom, M. (1986).Biochemistry 25, 3796–3803.

    Google Scholar 

  • Davis, J. H. (1983).Biochem. Biophys. Acta 737, 117–171.

    Google Scholar 

  • Deese, A. J., and Dratz, E. A. (1986). InProgress in Protein-Lipid Interactions (Watts, A., and De Pont, J. J. H. H. M., eds.), Elsevier, Amsterdam, Vol. 2, Chapter 2.

    Google Scholar 

  • De Kruijff, B., and Cullis, P. R. (1980).Biochim. Biophys. Acta 602, 477–490.

    Google Scholar 

  • De Kruijff, B., Cullis, P. R., Verkleij, A. J., Hope, M. J., Van Echteld, C. J. A., Taraschi, T. F., Van Hoogevest, P., Killian, J. A., Rietveld, A., and Van der Steen, A. T. M. (1985a). InProgress in Protein-Lipid Interactions (Watts, A. and De Pont, J. J. H. H. M., eds.), Elsevier, Amsterdam, Vol. 1, Chapter 3.

    Google Scholar 

  • De Kruijff, B., Cullis, P. R., Verkleij, A. H., Hope, M. J., Van Echteld, C. J. A., and Taraschi, T. F. (1985b). InThe Enzymes of Biological Membranes, 2nd edn, Vol. 1,Membrane Structure and Dynamics, Plenum Press, New York, pp. 131–204.

    Google Scholar 

  • Dempsey, C. E., and Watts, A. (1987).Biochemistry 26, 5811–5816.

    Google Scholar 

  • Dempsey, C. E., Ryba, N. J. P., and Watts, A. (1986).Biochemistry 25, 2180–2187.

    Google Scholar 

  • Dempsey, C. E., Cryer, G., and Watts, A. (1987).FEBS Lett.,218, 173–177.

    Google Scholar 

  • Devaux, P. F., and Seigneuret, M. (1985).Biochim. Biophys. Acta 822, 63–125.

    Google Scholar 

  • Devaux, P. F., Hoatson, G. L., Favre, E., Fellmann, P., Farren, B., MacKay, A. L., and Bloom, M. (1986).Biochemistry 25, 3804–3812.

    Google Scholar 

  • Diebler, G. E., Martenson, R. E., and Kles, M. W. (1972).Prep. Biochem. 2, 139–165.

    Google Scholar 

  • Diebler, G. E., Martenson, R. E., and Kles, M. W. (1975).J. Neurochem. 24, 173–182.

    Google Scholar 

  • Dufourc, E. J., Smith, I. C. P., and Dufourcq, J. (1986).Biochemistry 25, 6448–6455.

    Google Scholar 

  • Dufourcq, J., Faucon, J-L., Fourche, G., Dasseux, J.-L., LeMaire, M., and Gulik-Krzywicki, T. (1986).Biochim. Biophys. Acta 859, 33–48.

    Google Scholar 

  • El Mashak, E. M., and Tocanne, J. F. (1980).Biochim. Biophys. Acta 729, 44–52.

    Google Scholar 

  • Engleman, D. M., and Zaccai, G. (1980).Proc. Natl. Acad. Sci. USA 77, 5894–5898.

    Google Scholar 

  • Feingold, D. S., HsuChen, C. C., and Sud, I. J. (1974).Ann. N.Y. Acad. Sci. 235, 480–492.

    Google Scholar 

  • Gally, H. U., Pluschke, G., Overath, P., and Seelig, J. (1979).Biochemistry 18, 5605–5610.

    Google Scholar 

  • Gally, H. U., Pluschke, G., Overath, P., and Seelig, J. (1980).Biochemistry 19, 1638–1643.

    Google Scholar 

  • Harbison, G. S., Smith, S. O., Pardoen, J. A., Courtin, J. M. L., Lugtenburg, J., Herzfield, J., Mathies, R. A., and Griffin, R. G. (1985).Biochemistry 24, 6955–6962.

    Google Scholar 

  • Hartman, W., Galla, H. J., and Sackmann, E. (1978).Biochem. Biophys. Acta 510, 124–139.

    Google Scholar 

  • Hauser, H., Pascher, I., Pearson, R. H., and Sundrell, S. (1981).Biochim. Biophys. Acta 650, 21–51.

    Google Scholar 

  • Hippe, S., and Lüth, H. (1986).J. Theor. Biol. 121, 351–366.

    Google Scholar 

  • HsuChen, C. C., and Feingold, D. S. (1973).Biochemistry 12, 2105–2111.

    Google Scholar 

  • Hunt, M. J., and McKay, A. L. (1976).J. Magn. Reson. 22, 295–301.

    Google Scholar 

  • Israelachivili, J. N., Marcelja, S., and Horn, R. G. (1980).Q. Rev. Biophys. 13, 121–200.

    Google Scholar 

  • Knowles, P. F., Watts, A., and Marsh, D. (1981).Biochemistry 20, 5888–5894.

    Google Scholar 

  • Lavialle, F., Levin, I., and Molloy, C. (1980).Biochim. Biophys. Acta,600, 62–71.

    Google Scholar 

  • Marsh, D., and Watts, A. (1982). InLipid-Protein Interactions (Jost, P. C., and Griffith, O. H., eds.), Wiley-Interscience, New York, Vol. 2, Chapter 2.

    Google Scholar 

  • Marsh, D., and Watts, A. (1987). InAdvances in Membrane Fluidity (Aloia, R. C., ed.), Alan R. Liss Inc., New York, Vol. 2.

    Google Scholar 

  • Marsh, D., Phillips, A. D., Watts, A., and Knowles, P. F. (1971).Biochim. Biophys. Res. Commun. 49, 641–648.

    Google Scholar 

  • Meier, P., Ohmes, E., and Kothe, G. (1986).J. Chem. Phys. 85, 3598–3614.

    Google Scholar 

  • Mühlebach, T., and Cherry, R. J. (1985).Biochemistry 24, 975–983.

    Google Scholar 

  • Müller, K., Meier, P., and Kothe, G. (1985).Prog. Nucl. Magn. Reson. Spectrosc. 17, 211–239.

    Google Scholar 

  • Oldfield, E., Gilmore, R., Glaser, M., Gutowsky, M. S., Hsung, J. C., Kang, S. Y., King, T. E., Meadows, M., and Rice, D. (1978).Proc. Natl. Acad. Sci. USA 75, 4657–4660.

    Google Scholar 

  • Paddy, M. R., Dalquist, F. W., Davis, J. H., and Bloom, M. (1981).Biochemistry 20, 3152–3162.

    Google Scholar 

  • Powell, G. L., Knowles, P. F., and Marsh, D. (1985).Biochim. Biophys. Acta 816, 191–194.

    Google Scholar 

  • Quinn, P., and Dawson, R. M. C. (1969).Biochem. J. 115, 65–75.

    Google Scholar 

  • Rand, R. P., and Sengupta (1972).Biochem. Biophys. Acta 255, 484–492.

    Google Scholar 

  • Ryba, N. J. P., Dempsey, C. E., and Watts, A. (1986).Biochemistry 25, 4818–4825.

    Google Scholar 

  • Seelig, J. (1977).Q. Rev. Biophys. 10, 353–418.

    Google Scholar 

  • Seelig, J., and Seelig, A. (1980).Q. Rev. Biophys. 13, 9–61.

    Google Scholar 

  • Seelig, J., and Seelig, A. (1985).Biochim. Biophys. Acta 815, 153–158.

    Google Scholar 

  • Seelig, J., Seelig, A., and Tamm, L. (1982). InLipid-Protein Interactions (Jost, P. C., and Griffith, O. H., eds.), Wiley-Interscience, New York, Vol. 2, Chapter 3.

    Google Scholar 

  • Sixl, F., and Galla, H. J. (1981).Biochim. Biophys. Acta 643, 626–635.

    Google Scholar 

  • Sixl, F., and Watts, A. (1982).Biochemistry 21, 6446–6452.

    Google Scholar 

  • Sixl, F., and Watts, A. (1983).Proc. Natl. Acad. Sci. USA 80, 1613–1615.

    Google Scholar 

  • Sixl, F., and Watts, A. (1985).Biochemistry 24, 7906–7910.

    Google Scholar 

  • Sixl, F., Brophy, P. J., and Watts, A. (1984).Biochemistry 23, 2032–2039.

    Google Scholar 

  • Tamm, L., and Seelig, L. (1983).Biochemistry 22, 1474–1483.

    Google Scholar 

  • Van, S. P., and Griffith, O. H. (1975).J. Membr. Biol. 20, 155–170.

    Google Scholar 

  • Watts, A. (1986).Stud. Biophys. 110, 149–154.

    Google Scholar 

  • Watts, A. (1987a). InMembrane Receptors, Dynamics and Energetics (Wirtz, K. A. W., ed.), Plenum Press, New York, pp. 329–339.

    Google Scholar 

  • Watts, A. (1987b).Bull. Mag. Reson., in press.

  • Watts, A., and Poile, T. P. (1986).Biochim. Biophys. Acta 861, 368–372.

    Google Scholar 

  • Watts, A., Harlos, K., Maschke, W., and Marsh, D. (1978).Biochim. Biophys. Acta 510, 63–74.

    Google Scholar 

  • Watts, A., Sixl, F., Ryba, N. J. P., Dempsey, C. E., and Brophy, P. J. (1985). InMagnetic Resonance in Biology and Medicine (Govil, G., Khetrapal, C. L., and Saran, A., eds.), Tata-McGraw Hill, New Delhi.

    Google Scholar 

  • Wohlegemuth, R., Waespe-Sarcevic, N., and Seelig, J. (1980).Biochemistry 19, 3315–3321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, A. Nuclear magnetic resonance methods to characterize lipid-protein interactions at membrane surfaces. J Bioenerg Biomembr 19, 625–653 (1987). https://doi.org/10.1007/BF00762300

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762300

Key Words

Navigation