Skip to main content
Log in

Metabolic regulation including anaerobic metabolism inParacoccus denitrificans

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Under anaerobic circumstances in the presence of nitrateParacoccus denitrificans is able to denitrify. The properties of the reductases involved in nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase are described. For that purpose not only the properties of the enzymes ofP. denitrificans are considered but also those fromEscherichia coli, Pseudomonas aeruginosa, andPseudomonas stutzeri. Nitrate reductase consists of three subunits: the α subunit contains the molybdenum cofactor, the β subunit contains the iron sulfur clusters, and the γ subunit is a special cytochromeb. Nitrate is reduced at the cytoplasmic side of the membrane and evidence for the presence of a nitrate-nitrite antiporter is presented. Electron flow is from ubiquinol via the specific cytochromeb to the nitrate reductase. Nitrite reductase (which is identical to cytochromecd 1) and nitrous oxide reductase are periplasmic proteins. Nitric oxide reductase is a membrane-bound enzyme. Thebc 1 complex is involved in electron flow to these reductases and the whole reaction takes place at the periplasmic side of the membrane. It is now firmly established that NO is an obligatory intermediate between nitrite and nitrous oxide. Nitrous oxide reductase is a multi-copper protein. A large number of genes is involved in the acquisition of molybdenum and copper, the formation of the molybdenum cofactor, and the insertion of the metals. It is estimated that at least 40 genes are involved in the process of denitrification. The control of the expression of these genes inP. denitrificans is totally unknown. As an example of such complex regulatory systems the function of thefnr, narX, andnarL gene products in the expression of nitrate reductase inE. coli is described. The control of the effects of oxygen on the reduction of nitrate, nitrite, and nitrous oxide are discussed. Oxygen inhibits reduction of nitrate by prevention of nitrate uptake in the cell. In the case of nitrite and nitrous oxide a competition between reductases and oxidases for a limited supply of electrons from primary dehydrogenases seems to play an important role. Under some circumstances NO formed from nitrite may inhibit oxidases, resulting in a redistribution of electron flow from oxygen to nitrite.P. denitrificans contains three main oxidases: cytochromeaa 3, cytochromeo, and cytochromeco. Cytochromeo is proton translocating and receives its electrons from ubiquinol. Some properties of cytochromeco, which receives its electrons from cytochromec, are reported. The control of the formation of these various oxidases is unknown, as well as the control of electron flow in the branched respiratory chain. Schemes for aerobic and anaerobic electron transport are given. Proton translocation and charge separation during electron transport from various electron donors and by various electron transfer pathways to oxygen and nitrogenous oxide are given. The extent of energy conservation during denitrification is about 70% of that during aerobic respiration. In sulfate-limited cultures (in which proton translocation in the NADH-ubiquinone segment of the respiratory chain is lost) the extent of energy conservation is about 60% of that under substrate-limited conditions. These conclusions are in accordance with measurements of molar growth yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albracht, S. P. J., van Verseveld, H. W., Hagen, W. R., and Kalkman, M. L. (1980).Biochim. Biophys. Acta 593, 173–186.

    Google Scholar 

  • Alefounder, P. R., and Ferguson, S. J. (1980).Biochem. J. 192, 231–240.

    Google Scholar 

  • Alefounder, P. R., and Ferguson, S. J. (1981).Biochem. Biophys. Res. Commun. 98, 778–784.

    Google Scholar 

  • Alefounder, P. R., and Ferguson, S. J. (1982).Biochem. Biophys. Res. Commun. 104, 1149–1155.

    Google Scholar 

  • Alefounder, P. R., McCarthy, J. E. G., and Ferguson, S. J. (1981).FEMS Microbiol. Lett. 12, 321–326.

    Google Scholar 

  • Alefounder, P. R., Greenfield, A. J., McCarthy, J. E. G., and Ferguson, S. J. (1983).Biochim. Biophys. Acta 724, 20–39.

    Google Scholar 

  • Anraku, Y., and Gennis, R. B. (1987).Trends Biochem. Sci. 12, 262–266.

    Google Scholar 

  • Ballard, A. L., and Ferguson, S. J. (1988).Eur. J. Biochem. 174, 207–212.

    Google Scholar 

  • Beijerinck, M., and Minkeman, D. C. J. (1910).Gerubralbl. Bakteriol. Parasitenk. Abl.II25, 30–63.

    Google Scholar 

  • Berry, E., and Trumpower, B. L. (1985).J. Biol. Chem. 260, 2458–2467.

    Google Scholar 

  • Blasco, F., Iobbi, C., Giordano, G., Chippaux, M., and Bonnefoy, V. (1989).Mol. Gen. Genet. 218, 249–256.

    Google Scholar 

  • Boogerd, F. C., van Verseveld, H. W., and Stouthamer, A. H. (1980).FEBS Lett. 113, 279–284.

    Google Scholar 

  • Boogerd, F. C., van Verseveld, H. W., and Stouthamer, A. H. (1981).Biochim. Biophys. Acta 638, 181–191.

    Google Scholar 

  • Boogerd, F. C., van Verseveld, H. W., and Stouthamer, A. H. (1983a).Biochim. Biophys. Acta 723, 415–427.

    Google Scholar 

  • Boogerd, F. C., Appeldoorn, K. J., and Stouthamer, A. H. (1983b).FEMS Microbiol. Lett. 20, 455–460.

    Google Scholar 

  • Boogerd, F. C., van Verseveld, H. W., Torenvliet, D., Braster, M., and Stouthamer, A. H. (1984).Arch. Microbiol. 139, 344–350.

    Google Scholar 

  • Bosma, G. (1989). Ph.D. Thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Bosma, G., Braster, M., Stouthamer, A. H., and van Verseveld (1987a).Eur. J. Biochem. 165, 665–670.

    Google Scholar 

  • Bosma, G., Braster, M., Stouthamer, A. H., and van Verseveld, H. W. (1987b).Eur. J. Biochem. 165, 657–663.

    Google Scholar 

  • Burke, K. A., Calder, K., and Lascelles, J. (1980).Arch. Microbiol. 126, 155–159.

    Google Scholar 

  • Calder, K. M., and Lascelles, J. (1984).Arch. Microbiol. 137, 226–230.

    Google Scholar 

  • Carr, G. J., Page, M. D., and Ferguson, S. J. (1989).Eur. J. Biochem. 179, 683–692.

    Google Scholar 

  • Carver, M. A., and Jones, C. W. (1983).FEBS Lett. 155, 187–191.

    Google Scholar 

  • Chang, C. K., Timkovich, R., and Wu, W. (1986).Biochemistry 25, 8447–8453.

    Google Scholar 

  • Chaudhry, G. R., and MacGregor, C. H. (1983).J. Bacteriol. 154, 387–394.

    Google Scholar 

  • Clark, M. A., Tang, Y. J., and Ingraham, J. L. (1989).J. Gen. Microbiol. 135, 2569–2575.

    Google Scholar 

  • Coyle, C. L., Zumft, W. G., Kroneck, P. M. H., Körner, H., and Jakob, W. (1985).Eur. J. Biochem. 153, 459–467.

    Google Scholar 

  • Craske, A., and Ferguson, S. J. (1986).Eur. J. Biochem. 158, 429–436.

    Google Scholar 

  • Duine, J. A., Frank, J., and Verwiel, P. E. J. (1980).Eur. J. Biochem. 108, 187–192.

    Google Scholar 

  • Ferguson, S. J. (1988).Symp. Soc. Gen. Microbiol. 42, 1–29.

    Google Scholar 

  • Forget, P. (1971).Eur. J. Biochem. 18, 442–458.

    Google Scholar 

  • Fox, G. E., Stackenbrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zable, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R. (1980).Science 209, 457–463.

    Google Scholar 

  • Froud, S. J., and Anthony, C. A. (1984).J. Gen. Microbiol. 130, 2201–2212.

    Google Scholar 

  • Gerhus, E., Steinrücke, P., and Ludwig, B. (1990).J. Bacteriol. 172, 2392–2400.

    Google Scholar 

  • Goretski, J., and Hollocher, T. C. (1988).J. Biol. Chem. 263, 2316–2323.

    Google Scholar 

  • Haltia, T., Finel, M., Harms, N., Nakari, T., Raitio, M., Wikström, M., and Saraste, M. (1989).EMBO J. 8, 3571–3579.

    Google Scholar 

  • Harms, N., de Vries, G. E., Maurer, K., Veltkamp, E., and Stouthamer, A. H. (1985).J. Bacteriol. 164, 1064–1070.

    Google Scholar 

  • Heiss, B., Frunzke, K., and Zumft, W. G. (1989).J. Bacteriol. 171, 3288–3297.

    Google Scholar 

  • Hernandez, D., and Rowe, J. J. (1987).Appl. Environ. Microbiol. 53, 745–750.

    Google Scholar 

  • Hochstein, L. I., and Tomlinson, G. A. (1900).Annu. Rev. Microbiol. 42, 231–261.

    Google Scholar 

  • Holm, L., Saraste, M., and Wikström, M. (1987).EMBO J. 6, 2819–2823.

    Google Scholar 

  • Husain, M., and Davidson, V. L. (1985).J. Biol. Chem. 260, 14626–14629.

    Google Scholar 

  • Husain, M., and Davidson, V. L. (1986).J. Biol. Chem. 261, 8577–8580.

    Google Scholar 

  • Itoh, M., Mizukami, S., Matsuura, K., and Satoh, T. (1989).FEBS Lett. 244, 81–84.

    Google Scholar 

  • Iuchi, S., and Liu, E. C. C. (1987).Proc. Natl. Acad. Sci. 84, 3901–3905.

    Google Scholar 

  • John, P. (1977).J. Gen. Microbiol. 98, 231–238.

    Google Scholar 

  • John, P., and Whatley, F. R. (1977).Nature (London)254, 495–498.

    Google Scholar 

  • Johnson, J. L., and Rajagopolan, K. V. (1982).Proc. Natl. Acad. Sci. USA 79, 6856–6860.

    Google Scholar 

  • Johnson, M. K., Bennett, D. E., Morningstar, J. E., Adams, M. W. W., and Mortenson, L. E., (1985).J. Biol. Chem. 260, 5456–5463.

    Google Scholar 

  • Kalman, L. V., and Gunsalus, R. P. (1989).J. Bacteriol. 171, 3810–3816.

    Google Scholar 

  • Knobloch, K., Ishaque, M., and Aleem, M. I. H. (1971).Arch. Microbiol. 76, 114–125.

    Google Scholar 

  • Kucera, I. (1989).FEBS Lett. 249, 56–58.

    Google Scholar 

  • Kucera, I., and Dadak, V. (1983).Biochem. Biophys. Res. Commun. 117, 252–258.

    Google Scholar 

  • Kucera, I., Dadak, V., and Dobry, T. (1983a).Eur. J. Biochem. 130, 359–364.

    Google Scholar 

  • Kucera, I., Laucik, J., and Dadak, V. (1983b).Eur. J. Biochem. 136, 135–140.

    Google Scholar 

  • Kucera, I., Karlovsky, P., and Dadak, V. (1981).FEMS Microbiol. Lett. 12, 391–394.

    Google Scholar 

  • Kucera, I., Krivankova, L., and Dadak, V. (1984).Biochim. Biophys. Acta 765, 43–47.

    Google Scholar 

  • Kucera, I., Matyasek, R., and Dadak, V. (1986).Biochim. Biophys. Acta 848, 1–7.

    Google Scholar 

  • Kucera, I., Lampardova, L., and Dadak, V. (1987).Biochim. Biophys. Acta 894, 120–126.

    Google Scholar 

  • Lam, Y., and Nicholas, D. J. D. (1969).Biochim. Biophys. Acta 172, 450–461.

    Google Scholar 

  • Lawford, H. G., Cox, J. C., Garland, P. B., and Haddock, B. A. (1976).FEBS Lett. 64, 369–374.

    Google Scholar 

  • Lee, H. S., Hancock, R. E. W., and Ingraham, J. L. (1989).J. Bacteriol. 171, 2096–2100.

    Google Scholar 

  • Li, S. F. and De Moss, J. A. (1988).J. Biol. Chem. 263, 13700–13705.

    Google Scholar 

  • McEwan, A. G., Greenfield, A. J., Wetzstein, H. G., Jackson, J. B., and Ferguson, S. J. (1985).J. Bacteriol. 164, 823–830.

    Google Scholar 

  • Meijer, E. M., van Verseveld, H. W., van der Beek, E. G., and Stouthamer, A. H. (1977a).Arch. Microbiol. 112, 25–34.

    Google Scholar 

  • Meijer, E. M., Wever, R., and Stouthamer, A. H. (1977b).Eur. J. Biochem. 81, 267–275.

    Google Scholar 

  • Meijer, E. M., van der Zwaan, J. W., and Stouthamer, A. H. (1979).FEMS Microbiol. Lett. 5, 369–372.

    Google Scholar 

  • Michalski, W. P., Hein, D. H., and Nicholas, D. J. D. (1986).Biochim. Biophys. Acta 872, 50–60.

    Google Scholar 

  • Mokkele, K., Tang, Y. J., Clark, M. A., and Ingraham, J. L. (1987).J. Bacteriol. 169, 5721–5726.

    Google Scholar 

  • Noji, S., Nohno, T., Saito, T., and Taniguchi, S. (1989).FEBS Lett. 252, 139–143.

    Google Scholar 

  • Page, M. D., and Ferguson, S. J. (1989).Mol. Microbiol. 3, 653–661.

    Google Scholar 

  • Parsonage, D., Greenfield, A. J., and Ferguson, S. J. (1985).Biochim. Biophys. Acta 807, 81–95.

    Google Scholar 

  • Parsonage, D., Greenfield, A. J., and Ferguson, S. J. (1986).Arch. Microbiol. 145, 191–196.

    Google Scholar 

  • Poole, R. K. (1988). InBacterial Energy Transduction, (Anthony, C. A., ed.), Academic Press, London, pp. 231–291.

    Google Scholar 

  • Porte, F., and Vignais, P. M. (1980).Arch. Microbiol. 127, 1–10.

    Google Scholar 

  • Puustinen, A., Finel, M., Virkki, M., and Wikström, M. (1989).FEBS Lett. 249, 163–167.

    Google Scholar 

  • Robertson, L. A., and Kuenen, J. G. (1990).Antonie van Leeuwenhoek,57, 139–152.

    Google Scholar 

  • Sapshead, L. M., and Wimpenny, J. W. (1972).Biochim. Biophys. Acta 267, 388–397.

    Google Scholar 

  • Scott, R. A., Zumft, W. G., Coyle, C. L., and Dooley, D. M. (1989).Proc. Natl. Acad. Sci. USA 86, 4082–4086.

    Google Scholar 

  • Shaw, D. J., and Guest, J. R. (1982).Nucleic Acids Res. 10, 6119–6130.

    Google Scholar 

  • Shaw, D. J., Rice, D. W., and Guest, J. R. (1983).J. Mol. Biol. 166, 241–247.

    Google Scholar 

  • Shearer, G., and Kohl, D. H. (1988).J. Biol. Chem. 263, 13231–13245.

    Google Scholar 

  • Silvestrini, M. C., Galeotti, C. L., Gervais, M., Schinina, E., Barra, D., Bossa, F., and Brunori, M. (1989)FEBS Lett. 254, 33–38.

    Google Scholar 

  • Snyder, S. W., and Hollocher, T. C. (1987).J. Biol. Chem. 262, 6515–6525.

    Google Scholar 

  • Spiro, S., Roberts, R. E., and Guest, J. R. (1989).Mol. Microbiol. 3, 601–608.

    Google Scholar 

  • Steinrücke, P., Steffens, G. C. M., Panskus, G., Buse, G., and Ludwig, B. (1987).Eur. J. Biochem. 167, 431–439.

    Google Scholar 

  • Stewart, V. (1988).Microbiol. Rev. 52, 190–232.

    Google Scholar 

  • Stewart, V., and Parales, J. (1988).J. Bacteriol. 170, 1589–1597.

    Google Scholar 

  • Stock, J. B., Ninfa, A. J., and Stock, A. M. (1989).Microbiol. Rev. 53, 450–490.

    Google Scholar 

  • Stouthamer, A. H. (1976).Adv. Microbiol. Physiol. 14, 315–375.

    Google Scholar 

  • Stouthamer, A. H., Boogerd, F. C. and van Verseveld, H. W. (1982).Antonie van Leeuwenhoek 48, 545–553.

    Google Scholar 

  • Stouthamer, A. H. (1988a). InBiology of Anaerobic Microorganisms, (Zehnder, A. J. B., ed.), Wiley, New York, pp. 245–303.

    Google Scholar 

  • Stouthamer, A. H. (1988b). InHandbook on Anaerobic Fermentations, (Erickson, L. E., and Fung, D. Y.-C., eds.), Marcel Dekker, New York, pp. 345–437.

    Google Scholar 

  • Timkovich, R., Dhesi, R., Martinkus, K. J., Robinson, M. K., and Rea, T. M. (1982).Arch. Biochem. Biophys. 215, 47–58.

    Google Scholar 

  • Trageser, M., and Unden, G. (1989).Mol. Microbiol. 3, 593–599.

    Google Scholar 

  • Van Spanning, R. J. M., Wansell, C., Harms, N., Oltmann, L. F. and Stouthamer, A. H. (1990).J. Bacteriol. 172, 986–996.

    Google Scholar 

  • Van Verseveld, H. W., and Bosma, G. (1987).Microbiol. Sci. 4, 329–333.

    Google Scholar 

  • Van Verseveld, H. W., and Stouthamer, A. H. (1978a).Arch. Microbiol. 118, 13–20.

    Google Scholar 

  • Van Verseveld, H. W., and Stouthamer, A. H. (1978b).Arch. Microbiol. 118, 21–26.

    Google Scholar 

  • Van Verseveld, H. W., and Stouthamer, A. H. (1991). The genusParacoccus. InThe Prokaryotes, 2nd edn. (Balows, A., Trüper, H. G., Dworkin, M., Harder, W., and Schleifer, K. H., eds.), Springer-Verlag, New York, in press.

    Google Scholar 

  • Van Verseveld, H. W., Boon, J. P., and Stouthamer, A. H. (1979).Arch. Microbiol. 121, 213–223.

    Google Scholar 

  • Van Verseveld, H. W., Krab, K., and Stouthamer, A. H. (1981).Biochim. Biophys. Acta 635, 525–534.

    Google Scholar 

  • Van Verseveld, H. W., Braster, M., Boogerd, F. C., Chance, B., and Stouthamer, A. H. (1983).Arch. Microbiol. 135, 225–236.

    Google Scholar 

  • Viebrock, A., and Zumft, W. G. (1988).J. Bacteriol. 170, 4658–4668.

    Google Scholar 

  • Vignais, P. M., Henry, M. F., Sim, E., and Kell, D. B. (1981).Curr. Top. Bioenerg. 12, 115–196.

    Google Scholar 

  • Weeg-Aerssens, E., Tiedje, J. M., and Averill, B. A. (1988).J. Am. Chem. Soc. 110, 6851–6856.

    Google Scholar 

  • Willison, J. C. and John, P. (1979).J. Gen. Microbiol. 115, 443–450.

    Google Scholar 

  • Willison, J. C., Haddock, B. A., and Boxer, D. A. (1981).FEMS Microbiol. Lett. 10, 249–253.

    Google Scholar 

  • Zumft, W. (1991). InThe Prokaryotes, 2nd edn. (Balows, A., Trüper, H. G., Dworkin, M., Harder, W., and Schleifer, K. H., eds.), Springer-Verlag, New York, in press.

    Google Scholar 

  • Zumft, W. G., and Kroneck, P. M. H. (1990). InDenitrification in Soil and Sediments (Sørensen, J., and Revsbech, N. P., eds.), Plenum Press, New York, in press.

    Google Scholar 

  • Zumft, W. G., Döhler, K., and Körner, H. (1985).J. Bacteriol. 163, 918–924.

    Google Scholar 

  • Zumft, W. G., Döhler, K., Körner, H., Löchelt, S., Viebrock, A., and Frunzke, K. (1988a).Arch. Microbiol. 149, 492–498.

    Google Scholar 

  • Zumft, W., Viebrock, A., and Körner, H. (1988b).Symp. Soc. Gen. Microbiol. 42, 245–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stouthamer, A.H. Metabolic regulation including anaerobic metabolism inParacoccus denitrificans . J Bioenerg Biomembr 23, 163–185 (1991). https://doi.org/10.1007/BF00762216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762216

Key Words

Navigation