Skip to main content
Log in

Organization and structure of the genes for the cytochromeb/c 1 complex in purple photosynthetic bacteria. A phylogenetic study describing the homology of theb/c 1 subunits between prokaryotes, mitochondria, and chloroplasts

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The cytochromeb/c 1 complex is an ubiquitous energy transducing enzyme, part of the electron transport chain of prokaryotes, mitochondria, and chloroplasts (b 6/f). In the ancient purple photosynthetic bacteria, theb/c 1 complex occupies a central metabolic role, being part of their photosynthetic and respiratory electron transport chain. InRhodobacter the three subunits of theb/c 1 complex are FeS protein, cytochromeb, and cytochromec 1, and they are encoded by a constitutively expressed operon namedfbc. The organization of the genes for the cytochromeb/c 1 complex, the modality of transcription, and the biogenesis of the encoded polypeptides will be described. TheRhodobacter species used to isolate thefbc genes, previously reported asR. sphaeroides was identified asR. capsulatus. Further biochemical characterization of the prokaryoticb/c 1 complex indicated that the three polypeptides encoded by thefbc operon comprise the entire catalytic structure: ubiquinol-cytochrome-c reductase.

The amino acid sequences of the threeb/c 1 subunits from the photosynthetic bacteriumRhodobacter capsulatus were compared with the corresponding sequences from yeast mitochondria and spinach chloroplasts. The high homology found between the sequences of all three redox polypeptides fromR. capsulatus and yeast mitochondria (cytochromeb 41%, FeS protein 46%, cytochromec 1 31%) provided further evidence that mitochondria arose from the phylogenetic line of purple bacteria. The structure of cytochromeb also exhibited considerable homology to chloroplast cytochromeb 6 plus subunit IV (26%). The amino acid sequence of the Rieske FeS protein fromR. capsulatus and chloroplasts were found to be conserved only in the C-terminal part (14% total identity), whereas the homology between cytochromec 1 and cytochromef is very weak (12%), despite similar topology of the two polypeptides.

Analysis of the homology suggested that the catalytic sites quinol oxidase (Qo) and quinone reductase (Qi) arose monophonetically, whereas cytochromec and plastocyanin reductase sites are not homologous and could derive from diverse ancestral genes by convergent evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

kb:

kilobase

kDa:

kilodalton

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  • Alt, J., and Herrmann, G. (1984).Curr. Genet. 8, 551–557

    Google Scholar 

  • Alt, J., Westhoff, P., Sears, B. B., Nelson, N., Hurt, E., Hauska, G., and Herrmann, R. G. (1983).EMBO J. 2, 979–986.

    Google Scholar 

  • Avtges, P., Scolnik, P. A., and Haselkorn, R. (1983).J. Bacteriol. 156, 251–256.

    Google Scholar 

  • Baccarini-Melandri, A., and Zannoni, D. (1978).J. Bioenerg. Biomembr. 10, 109–138.

    Google Scholar 

  • Baccarini-Melandri, A., Gabellini, N., and Melandri, B. A., Jones, K. R., Rutherford, A. W., Crofts, A. R., and Hurt, E. (1982).Arch. Biochem. Biophys. 216, 566–580.

    Google Scholar 

  • Bartsch, R. G. (1971).Methods Enzymol. 23, 344–363.

    Google Scholar 

  • Beckmann, J. D., Ljungdahl, P. O., Lopez, J. L., and Trumpower, B. L. (1987).J. Biol. Chem. 262, 8901–8909.

    Google Scholar 

  • Chang, C. H., Tiede, D., Tang, J., Smith, U., Norris, J., and Schiffer, M. (1986).FEBS Lett. 205, 82–86.

    Google Scholar 

  • Chory, J., and Kaplan, S. (1982).J. Biol. Chem. 257, 15110–15121.

    Google Scholar 

  • Colson, A. M., and Slonimski, P. P. (1979).Mol. Gen. Genet. 167, 287–298.

    Google Scholar 

  • Crofts, A. R. (1987). InCytochrome Systems: Molecular Biology and Bioenergetics (Papa, S., ed.), Plenum Press, New York, in press.

    Google Scholar 

  • Crofts, A. R., Meinhardt, S. W., Jones, K. R., and Snozzi, M. (1983).Biochim. Biophys. Acta 723, 202–218.

    Google Scholar 

  • Davidson, E., and Daldal, F. (1987a).J. Mol. Biol. 195, 13–24.

    Google Scholar 

  • Davidson, E., and Daldal, F. (1987b).J. Mol. Biol. 195, 25–29.

    Google Scholar 

  • Diesenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985).Nature (London)318, 618–624.

    Google Scholar 

  • Dickerson, R. E., and Timkovich, R. (1975). InThe Enzyme, (Boyer, P. D., ed.), Academic Press, New York, Vol. 11, pp. 397–547.

    Google Scholar 

  • Falk, G., Hampe, A., and Walker, E. J. (1985).Biochem. J. 228, 391–407.

    Google Scholar 

  • Fee, J. A., Findling, K. L., Yoshida, T., Hille, R., Tarr, G. E., Hearshen, D. O., Dunham, W. R., Day, E. P., Kent, T. A., and Münck, E. (1984).J. Biol. Chem. 259, 124–133.

    Google Scholar 

  • Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blankemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R. (1980).Science 209, 457–463.

    Google Scholar 

  • Gabellini, N., and Hauska, G. (1983).FEBS Lett. 154, 171–174.

    Google Scholar 

  • Gabellini, N., and Sebald, W. (1986).Eur. J. Biochem. 154, 569–579.

    Google Scholar 

  • Gabellini, N., Bowyer, J. R., Hurt, E., Melandri, B. A., and Hauska, G. (1982).Eur. J. Biochem. 126, 105–111.

    Google Scholar 

  • Gabellini, N., Harnish, U., McCarthy, J. E. G., Hauska, G., and Sebald, W. (1985).EMBO J. 4, 549–553.

    Google Scholar 

  • Gibson, F. (1982).Proc. R. Soc. London Ser. B 251, 1–18.

    Google Scholar 

  • Gibson, J., Stackebrandt, E., Zablen, L., Gupta, R., and Woese, C. R. (1979).Curr. Microbiol. 3, 59–64.

    Google Scholar 

  • Hallick, R. B., and Bottomley, W. (1983).Plant. Mol. Biol. Rep. 1, 38–45.

    Google Scholar 

  • Harnisch, U., Weiss, H., and Sebald, W. (1985).Eur. J. Biochem. 149, 95–99.

    Google Scholar 

  • Hartl, F. U., Schmidt, B., Wachter, E., Weiss, H., and Neupert, W. (1986).Cell 47, 939–951.

    Google Scholar 

  • Hauska, G., Hurt, E., Gabellini, N., and Lokau, W. (1983).Biochim. Biophys. Acta 726, 97–133.

    Google Scholar 

  • Hauska, G., Nitsche, W., and Herrmann, R. G. (1988).J. Bioenerg. Biomembr., submitted.

  • Heinemayer, W., Alt, G., and Herrmann, R. G. (1984).Curr. Genet. 8, 543–549.

    Google Scholar 

  • Hurt, E., and Hauska, G. (1981).Eur. J. Biochem. 117, 591–559.

    Google Scholar 

  • Imhoff, J. F., Trüper, H. G., and Pfennig, N. (1984).Int. J. Sist. Bacteriol. 34, 340–343.

    Google Scholar 

  • Kallas, T., Spiller, S., and Malkin, R. (1986). Abstracts VII Int. Congress on Photosynthesis, Brown University, Providence, Rhode Island.

    Google Scholar 

  • Kurowski, B., and Ludwig, B. (1987).J. Biol. Chem. 262, 13805–13811.

    Google Scholar 

  • Link, T. A., Schägger, H., and von Jagow, G. (1986)FEBS Lett. 204, 9–15.

    Google Scholar 

  • McClure, W. R. (1985).Annu. Rev. Biochem. 54, 171–204.

    Google Scholar 

  • Michaelis, S., and Beckwith, J. (1982).Annu. Rev. Microbiol. 36, 435–465.

    Google Scholar 

  • Mitchell, P. (1976).J. Theor. Biol. 62, 327–367.

    Google Scholar 

  • Niederman, R. A., and Gibson, K. D. (1978). InThe Photosynthetic Bacteria (Clayton, R. K., and Sistrom, W. R., eds.), Plenum Press, New York, pp. 79–113.

    Google Scholar 

  • Nobrega, F. G., and Tzagoloff, A. (1980).J. Biol. Chem. 255, 9828–9837.

    Google Scholar 

  • Okamura, M. Y., Feher, G., and Nelson, N. (1982). InPhotosynthesis (Govindjee, ed.), Academic Press, New York, pp. 195–272.

    Google Scholar 

  • Oesterhelt, D., and Stoeckenius, W., (1973).Proc. Natl. Acad. Sci. U.S.A. 70, 2853–2857.

    Google Scholar 

  • Paetow, B., and Ludwig, B. (1986). Fourth EBEC, Short Reports, p. 102, Prague.

  • Paetow, B., Ferguson, S., Gabellini, N., Hoeren, F., Ludwig, B., and McCarthy, J. E. G. (1986). Fourth EBEC, Short Reports, p. 101, Prague.

  • Platt, T. (1981).Cell 24, 10–23.

    Google Scholar 

  • Pfennig, N. (1978). InThe Photosynthetic Bacteria (Clayton, R. K., and Sistrom, W. R., eds.), Plenum Press, New York, pp. 3–18.

    Google Scholar 

  • Rapoport, T. A., and Wiedmann, M. (1985).Curr. Top. Membr. Transp. 24, 1–61.

    Google Scholar 

  • Rieske, J. S., MacLennan, D. H., and Coleman, R. (1964).Biochem. Biophys. Res. Commun. 15, 338–344.

    Google Scholar 

  • Robertson, D. E., Davidson, E., Prince, R. C., van den Berg, W. H., Marrs, B. L., and Dutton, P. L. (1986).J. Biol. Chem. 261, 584–591.

    Google Scholar 

  • Sadler, I., Suda, K., Schatz, G., Kaudewitz, F., and Haid, A. (1984).EMBO J. 3, 2137–2143.

    Google Scholar 

  • Saraste, M. (1984).FEBS Lett. 166, 367–372.

    Google Scholar 

  • Shine, J., and Dalgarno, K. (1975).Nature (London)254, 34–38.

    Google Scholar 

  • Sistrom, W. R. (1978). InThe Photosynthetic Bacteria (Clayton, R. K., and Sistrom, W. R., eds.), Plenum Press, New York, pp. 927–934.

    Google Scholar 

  • Steppuhn, J., Hermans, J., Janson, T., Vater, J., Hauska, J., and Herrmann, R. G. (1987).Mol. Gen. Genet., in press.

  • Stout, C. D. (1982). InIron-Sulfur Proteins (Spiro, T. G., ed.), Wiley, New York, pp. 97–146.

    Google Scholar 

  • Telser, J., Hoffman, B. M., LoBrutto, R., Ohnishi, T., Tsai, A. L., Simpkin, D., and Palmer, G. (1987).FEBS Lett. 214, 117–121.

    Google Scholar 

  • Tybulewicz, V. L. J., Falk, G., and Walker, J. E. (1984).J. Mol. Biol. 179, 185–214.

    Google Scholar 

  • Von Jagow, G., and Sebald, W. (1980).Annu. Rev. Biochem. 49, 281–314.

    Google Scholar 

  • Wakabayashi, S., Matsubara, H., Kim, C. H., Kawai, K., and King, E. (1980).Biochem. Biophys. Res. Commun. 97, 1548–1554.

    Google Scholar 

  • Wakabayashi, S., Takeda, H., Matsubara, H., Kim, C. H., and King, T. E. (1982).J. Biochem. 91, 2077–2085.

    Google Scholar 

  • Weaver, P. F., Wall, J. D., and Gest, H. (1975).Arch. Microbiol. 105, 207–216.

    Google Scholar 

  • Weyer, K. A., Lottspeich, F., Gruenberg, H., Lang, F., Oesterhelt, D., and Michel, H. (1987).EMBO J. 8, 2197–2202.

    Google Scholar 

  • Widger, W. R., Cramer, W. A., Herrmann, R. G., and Trebst, A. (1984).Proc. Natl. Acad. Sci. USA 81, 674–678.

    Google Scholar 

  • Willey, D. L., Howe, C. J., Auffret, A. D., Bowman, C. M., Dyer, T. A., and Gray, J. C. (1984).Mol. Gen. Genet. 194, 416–422.

    Google Scholar 

  • Williams, J. C., Steiner, L. A., Feher, G., and Simon, M. I. (1984).Proc. Natl. Acad. Sci. USA 81, 7303–7307.

    Google Scholar 

  • Wilson, E., Farley, T. M., and Takemoto, J. Y., (1985).J. Biol. Chem. 260, 10288–10292.

    Google Scholar 

  • Woese, C. R., Stackebrandt, E., Weisburg, W. G., Paster, B. J., Madigan, M. T., Fowler, V. J., Hahn, C. M., Blanz, P., Gupt, R., Nealson, K. H., and Fox, G. E. (1984).Syst. Appl. Microbiol. 5, 315–326.

    Google Scholar 

  • Wynn, R. M., Gaul, D. F., Choi, W. K., Shaw, R. W., and Knaff, D. B. (1986).Photosynth. Res. 9 181–195.

    Google Scholar 

  • Yang, X., and Trumpower, B. L. (1986).J. Biol. Chem. 261, 12282–12289.

    Google Scholar 

  • Youvan, D., Bylina, E. J., Albert, M., Begusch, H., and Hearst, J. E. (1984).Cell 34, 949–957.

    Google Scholar 

  • Yu, C. A., and Yu, L. (1981).Biochim. Biophys. Acta 639, 99–128.

    Google Scholar 

  • Yu, L., and Yu, C. A. (1982).Biochem. Biophys. Commun. 108, 1285–1292.

    Google Scholar 

  • Zannoni, D., and Marrs, B. (1981).Biochim. Biophys. Acta 637, 96–106.

    Google Scholar 

  • Zsebo, K. M., and Hearst, J. E. (1984).Cell 37, 937–947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabellini, N. Organization and structure of the genes for the cytochromeb/c 1 complex in purple photosynthetic bacteria. A phylogenetic study describing the homology of theb/c 1 subunits between prokaryotes, mitochondria, and chloroplasts. J Bioenerg Biomembr 20, 59–83 (1988). https://doi.org/10.1007/BF00762138

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762138

Key Words

Navigation