Skip to main content
Log in

Published Tunneling Results of Binnig et al Interpreted as Related to Surface Superconductivity in SrTiO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In 1980, Binnig et al. reported tunneling measurements on Nb-doped SrTiO3, and interpreted their results as indicating two-band superconductivity in the bulk of SrTiO3. However, (1) effective masses determined from tunneling results in the normal state by Sroubek in 1969 and 1970 are much smaller than those determined by most other methods. The much smaller masses were attributed to properties of a surface layer by the present author in 1971. (2) The only other reports of two-band superconductivity in bulk SrTiO3 can be used to infer much smaller values for the band separations than found by Binnig et al. In this paper, we give an alternative explanation of the results of Binnig et al. in terms of superconductivity in a surface layer. We obtain fair fits to the band gaps versus Fermi energy for the two bands in the three samples where two surface subbands are occupied and to the temperature dependence of the gaps in one crystal, using a model with three adjustable interaction parameters, an adjustable energy for the phonons which dominate the pairing, and an adjustable ratio of the mean-field T c to the actual T c . We show results for a combined fit to the low-temperature band gaps and to the T-dependence in one crystal. The phonon energy which gives the best fit is 21 meV. This is probably an appropriate average over the three longitudinal polar modes and acoustic modes in the material. A large value of about two is found for the ratio T c m f /T c , and we conjecture that this arises because a band with a small Fermi energy, not seen in the tunneling results, plays a part in increasing T c m f /T c .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Binnig, G., Baratoff, A., Hoenig, H., Bednorz, J.G.: Phys. Rev. Lett. 45, 1352 (1980)

    Article  ADS  Google Scholar 

  2. Sroubek, Z.: Solid State Commun. 7, 1561 (1969)

    Article  ADS  Google Scholar 

  3. Sroubek, Z.: Phys. Rev. B 2, 3170 (1979)

    Article  ADS  Google Scholar 

  4. Eagles, D.M.: Phys. Stat. Sol. (b) 48, 407 (1971)

    Article  ADS  Google Scholar 

  5. Lin, X., Gourgout, A., Seyfarth, G., Krämer, S., Nardone, M., Fauqué, B., Behnia, K.: Phys. Rev. Lett. 112, 207002 (2014)

    Article  ADS  Google Scholar 

  6. Lin, X., Gourgout, A., Bridoux, G., Jomard, F., Pourret, A., Fauqué, B., Aoki, D., Behnia, K.: Phys. Rev. B 90, 140508 (2014)

    Article  ADS  Google Scholar 

  7. Suhl, H., Matthias, B.T., Walker, I.R.: Phys. Rev. Lett. 3, 552 (1959)

    Article  ADS  Google Scholar 

  8. Eagles, D.M.: J. Phys. Chem. Solids 26, 672 (1965)

    Article  ADS  Google Scholar 

  9. Barker, A.S. Jr.: Phys. Rev. 145, 291 (1966)

    Article  ADS  Google Scholar 

  10. Devreese, J.T., Klimin, S.N., van Mechelen, J.L.M., van der Marel, D.: Phys. Rev. B 81, 125119 (2010)

    Article  ADS  Google Scholar 

  11. Swartz, A.G., Inoue, H., Merz, T.A., Hikita, Y., Raghu, S., Devereaux, T.P., Johnston, S., Hwang, H.Y.: Proceedings SPIE 9931. arXiv:1608.05621 (2016)

  12. Rosenstein, B., Shapiro, B.Y., Shapiro, I., Li, D.: Phys. Rev. B 94, 02405 (2016)

    Article  Google Scholar 

  13. Fernandes, R.M., Haraldsen, J.T., Wölfe, P., Balatsky, A.V.: Phys. Rev. B 87, 014510 (2013)

    Article  ADS  Google Scholar 

  14. Mizohata, Y., Ichioka, M., Machida, K.: Phys. Rev. B 87, 14505 (2013)

    Article  ADS  Google Scholar 

  15. Ueno, K., Nakamura, S., Shimotani, H., Ohtomo, A., Kimura, N., Nojima, T., Aoki, H., Iwasa, Y., Kawasaki, M.: Nat. Mater. 7, 855 (2008)

    Article  ADS  Google Scholar 

  16. Klimin, S.N., Tempere, J., Devreese, J.T., Van der Marel, D.: J. Sup. Nov. Mag. 30, 757 (2017)

    Article  Google Scholar 

  17. Frederikse, H.P.R., Hosler, W.R.: Phys. Rev. 161, 2 (1967)

    Article  Google Scholar 

  18. Van der Marel, D., Van Mechelen, J.L.M., Mazin, I.I.: Phys. Rev. B 24, 205111 (2011)

    Article  Google Scholar 

  19. Wang, Z., McKeown Walker, S., Tamai, A., Ristic, Z., Bruno, F.Y., De la Torre, A., Riccò, S., Plumb, N.C., Shi, M., Hlawenka, P., Sánchez-Barriga, J., Varykhalov, A., Kim, T.K., Hoesch, M., King, P.D.C., Meevasana, W., Diebold, U., Moritz, B., Devereux, T.P., Radovic, M., Baumberger, F.: Nature Mat. 15, 835 (2016)

    Article  ADS  Google Scholar 

  20. Boschker, H., Richter, C., Fillis-Tsikaris, E., Schneider, C.W., Mannhart, J.: Sci. Rep. 5, 12309 (2015)

    Article  ADS  Google Scholar 

  21. Baratoff, A., Binnig, G.: Physica B 108, 1335 (1981)

    Article  Google Scholar 

  22. Ruhman, J., Lee, P.A.: Phys. Rev. B 224515, 94 (2016)

    Google Scholar 

  23. Meevasana, W., Zhou, X.J., Moritz, B., Chen, C.-C., He, R.H., Fujimori, S.-I., Lu, D.H., Mo, S.-K., Moore, R.G., Baumberger, F., Devereaux, T.P., Van der Marel, D., Nagaosa, N., Zaanen, J., Shen, Z.-X.: New J. Phys. 12, 023004 (2010)

    Article  ADS  Google Scholar 

  24. Stucky, A., Scheerer, G., Ren, Z., Jaccard, D., Poumiro, J.-M., Barreteau, C., Giannini, E., Van der Marel, D.: Sci. Rep. 6, 37582 (2016)

    Article  ADS  Google Scholar 

  25. Edge, J.M., Kedem, Y., Aschauer, U., Spaldin, N.A., Balatsky, A.V.: Phys. Rev. Lett. 115, 247002 (2015)

    Article  ADS  Google Scholar 

  26. Kedem, Y., Zhu, J.-W., Balatsky, A.V.: Phys. Rev. B 93, 184507 (2016)

    Article  ADS  Google Scholar 

  27. Paskin, A., Singh, A.D.: Phys. Rev. 140, A1965 (1965)

    Article  ADS  Google Scholar 

  28. Eagles, D.M.: Phys. Rev. 164, 489 (1967)

    Article  ADS  Google Scholar 

  29. Eagles, D.M.: Physica B 457, 177 (2015)

    Article  ADS  Google Scholar 

  30. Fröhlich, H.: Adv. Phys. 3, 325 (1954)

    Article  ADS  Google Scholar 

  31. Eagles, D.M.: Phys. Rev. 186, 486 (1969)

    Article  ADS  Google Scholar 

  32. Miu, L.: Romanian Rep. Phys. 60, 717 (2008)

    Google Scholar 

  33. Kagan, M.: JETP Lett. 103, 728 (2016)

    Article  ADS  Google Scholar 

  34. Chubukov, A.V., Eremin, I., Efremov, D.V.: Phys. Rev. B 93, 174516 (2016)

    Article  ADS  Google Scholar 

  35. Perali, A., Castellani, C., di Castro, C., Grilli, M., Piegari, E., Varlamov, A.A.: Phys. Rev. B 62, R9295 (2000)

    Article  ADS  Google Scholar 

  36. Lubashevsky, Y., Lahoud, E., Chaska, K., Podolsky, D., Kanigel, A.: Nature Phys. 8, 309 (2012)

    Article  ADS  Google Scholar 

  37. Innocenti, D., Caprara, S., Poccia, N., Ricci, A., Valetta, A., Bianconi, A.: Phys. Rev. B 82, 174528 (2010)

    Article  Google Scholar 

  38. Mazzioti, M.V., Valletta, A., Campi, G., Innocenti, D., Perali, A., Bianconi, A.: arXiv:1705.09690 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Eagles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eagles, D.M. Published Tunneling Results of Binnig et al Interpreted as Related to Surface Superconductivity in SrTiO3 . J Supercond Nov Magn 31, 1021–1027 (2018). https://doi.org/10.1007/s10948-017-4289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4289-9

Keywords

Navigation