Skip to main content
Log in

Divalent cations and the phosphatase activity of the (Na + K)-dependent ATPase

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favorsE 2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favorsE 1 conformations, decreased it. These observations are interpretable in terms of activation through two classes of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions)E 2 conformations, are effective, whereas Ca2+, favoringE 1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, and although Ca2+ and Mn2+ are fairly effective, Mg2+ is a poor substitute for K+, while Na+ at these sites favorsE 1 conformations. K+ increases theK m for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus Na+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, R. W., and Koval, G. J. (1972).J. Biol. Chem. 247, 3088–3092.

    Google Scholar 

  • Albers, R. W., and Koval, G. J. (1973).J. Biol. Chem. 248, 777–784.

    Google Scholar 

  • Ash, D. E., and Schramm, V. L. (1982).J. Biol. Chem. 257, 9261–9264.

    Google Scholar 

  • Beaugé, L. A., and Glynn, I. M. (1979).Nature (London) 280, 510–512.

    Google Scholar 

  • Beagué, L. E., and Campos, M. A. (1983).Biochim. Biophys. Acta 729, 137–149.

    Google Scholar 

  • Blostein, R. (1983).J. Biol. Chem. 258, 7948–7953.

    Google Scholar 

  • Cantley, L. C. (1981).Curr. Top. Bioenerg. 11, 201–237.

    Google Scholar 

  • Castro, J., and Farley, R.A. (1979).J. Biol. Chem. 254, 2221–2228.

    Google Scholar 

  • Drapeau, P., and Blostein, R. (1980).J. Biol. Chem. 255, 7828–7834.

    Google Scholar 

  • Fukushima, Y., and Post, R. L. (1978).J. Biol. Chem. 253, 6853–6862.

    Google Scholar 

  • Glynn, I. M., and Karlish, S. J. D. (1976).J. Physiol. 256, 465–496.

    Google Scholar 

  • Grisham, C. M., and Mildvan, A. S. (1974).J. Biol. Chem. 249, 3187–3197.

    Google Scholar 

  • Hasen, O. (1985). InThe Sodium Pump (I. M. Glynn and J. C. Ellory, eds.), Company of Biologists, Cambridge, in press.

    Google Scholar 

  • Huang, W.-H., and Askari, A. (1984).Arch. Biochem. Biophys. 231, 287–292.

    Google Scholar 

  • Karlish, S. J. D. (1980).J. Bioenerg. Biomembr. 12, 111–136.

    Google Scholar 

  • Karlish, S. J. D., Yates, D. W., and Glynn, I. M. (1978).Biochim. Biophys. Acta 525, 252–264.

    Google Scholar 

  • Jorgensen, P. L. (1974).Biochim. Biophys. Acta 356, 36–52.

    Google Scholar 

  • Jorgensen, P. L. (1975).Biochim. Biophys. Acta 401, 339–415.

    Google Scholar 

  • Pedemonte, C. H., and Beaugé, L. (1983).Biochim. Biophys. Acta 748, 245–253.

    Google Scholar 

  • Post, R. L. (1985). InThe Sodium Pump (I. M. Glynn and J. C. Ellory, eds.), Company of Biologists, Cambridge, in press.

    Google Scholar 

  • Post, R. L., Hegyvary, C., and Kume, S. (1972).J. Biol. Chem. 247, 6530–6540.

    Google Scholar 

  • Robinson, J. D. (1969).Biochemistry 8, 3348–3355.

    Google Scholar 

  • Robinson, J. D. (1970).Arch. Biochem. Biophys. 139, 164–171.

    Google Scholar 

  • Robinson, J. D. (1971).Mol. Pharmacol. 7, 238–246.

    Google Scholar 

  • Robinson, J. D. (1972).Biochim. Biophys. Acta 274, 542–550.

    Google Scholar 

  • Robinson, J. D. (1974).Biochim. Biophys. Acta 341, 232–247.

    Google Scholar 

  • Robinson, J. D. (1975).Biochim. Biophys. Acta 384, 250–264.

    Google Scholar 

  • Robinson, J. D. (1981).Biochem. Biophys. Acta 642, 405–417.

    Google Scholar 

  • Robinson, J. D. (1982).J. Bioenerg. Biomembr. 14, 319–333.

    Google Scholar 

  • Robinson, J. D. (1983).Curr. Top. Membr. Transport 19, 595–598.

    Google Scholar 

  • Robinson, J. D. (1985). InThe Sodium Pump (I. M. Glynn and J. C. Ellory, eds.), Company of Biologists, Cambridge, in press.

    Google Scholar 

  • Robinson, J. D., and Flashner, M. S. (1979).Biochim. Biophys. Acta 549, 145–176.

    Google Scholar 

  • Robinson, J. D., and Mercer, R. W. (1981).J. Bioenerg. Biomembr. 13, 205–218.

    Google Scholar 

  • Robinson, J. D., Levine, G. M., and Robinson, L. J. (1983).Biochim. Biophys. Acta 731, 406–414.

    Google Scholar 

  • Robinson, J. D., Robinson, L. J., and Martin, N. J. (1984).Biochim. Biophys. Acta 772, 295–306.

    Google Scholar 

  • Sachs, J. R. (1985). InThe Sodium Pump (I. M. Glynn and J. C. Ellory, eds.), Company of Biologists, Cambridge, in press.

    Google Scholar 

  • Schuurmans Stekhoven, F., and Bonting, S. L. (1981).Physiol. Rev. 61, 1–76.

    Google Scholar 

  • Schwartz, A., Matsui, H., and Laughter, A. H. (1968).Science 160, 323–325.

    Google Scholar 

  • Skou, J. C., and Esmann, M. (1980).Biochim. Biophys. Acta 601, 386–402.

    Google Scholar 

  • Skou, J. C. (1974).Biochim. Biophys. Acta 339, 258–273.

    Google Scholar 

  • Swann, A. C. (1983).Arch. Biochem. Biophys. 221, 148–157.

    Google Scholar 

  • Tashima, Y., Hasegawa, M., Mizunuma, H., and Sakagishi, Y. (1977).Biochim. Biophys. Acta 482, 1–10.

    Google Scholar 

  • Tobin, T., Akera, T., Baskin, S. I., and Brody, T. M. (1973).Mol. Pharmacol. 9, 336–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, J.D. Divalent cations and the phosphatase activity of the (Na + K)-dependent ATPase. J Bioenerg Biomembr 17, 183–200 (1985). https://doi.org/10.1007/BF00751061

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00751061

Key words

Navigation