Skip to main content
Log in

Mechanism of mitochondrial transport of thallous ions

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Rat liver mitochondria were found to swell under nonenergized conditions when suspended in media containing 30–40 mM TINO3. Respiration on succinate caused a rapid contraction of mitochondria swollen under nonenergized conditions. In the presence of thallous acetate, there was a rapid initial swelling under nonenergized conditions until a plateau was reached; respiration on succinate then caused a further swelling. Trace amounts of204Tl (less than 100 µM) equilibrated fairly rapidly across the mitochondrial membrane. The influx of Tl+ was able to promote the decay not only of a valinomycin-induced K+-diffusion potential but also of respiration-generated fields in the inner membrane in accordance with the electrophoretic nature of Tl+ movement. Efflux of Tl+ showed a half-time of about 10 sec at 20°C and was not affected appreciably by the energy state. Efflux was retarded by Mg2+ and by lowering the temperature. The data indicate that Tl+ when present at high concentrations, 30 mM or more, distributes across the mitochondrial inner membrane both in response to electrical fields and to Δ pH. In energized mitochondria the uptake of Tl+ would occur electrophoretically, while Tl+/H+ exchange would constitute a leak. In the presence of NO 3 , the movements of Tl+ are determined by that of NO 3 , indicating short-range coupling of electrical forces. At low concentrations of Tl+, 5 mM or less, there was no indication of a Tl+/H+ exchange, which appears to be induced by high concentrations of Tl+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerman, K. E. O., and Wikström, M. K. F. (1976).FEBS Lett. 68 191.

    Google Scholar 

  • Azzone, G. F., Bortolotto, F., Zanotti, A., and Pregnolato, L. (1978a).FEBS Lett. 96 135.

    Google Scholar 

  • Azzone, G. F., Zanotti, A., and Colonna, R. (1978b).FEBS Lett. 96 141.

    Google Scholar 

  • Bakker, E. P. (1978).Biochemistry 17 2899.

    Google Scholar 

  • Barrera, H., and Gomez-Puyou, A. (1975).J. Biol. Chem. 250 5370.

    Google Scholar 

  • Brierley, G. P. (1974).Ann. N.Y. Acad. Sci. 227 398.

    Google Scholar 

  • Brierley, G. P. (1976).Mol. Cell Biochem. 10 41.

    Google Scholar 

  • Brierley, G. P., Jurkowitz, M., Chavez, E., and Jung, D. W. (1977).J. Biol. Chem. 252 7932.

    Google Scholar 

  • Brierley, G. P., Jurkowitz, M., and Jung, D. W. (1978).Arch. Biochem. Biophys. 190 181.

    Google Scholar 

  • Britten, J. S., and Blank, M. (1968).Biochim. Biophys. Acta 159 160.

    Google Scholar 

  • Chavez, E., Jung, D. W., and Brierley, G. P. (1977).Biochem. Biophys. Res. Commun. 75 69.

    Google Scholar 

  • Diwan, J. J., and Lehrer, P. H. (1977).Biochem. Soc. Trans. 5 203.

    Google Scholar 

  • Duszynski, J., and Wojtczak, L. (1977).Biochem. Biophys. Res. Commun. 74 417.

    Google Scholar 

  • Kayne, E. J. (1971).Arch. Biochem. Biophys. 143 232.

    Google Scholar 

  • Melnick, R. L., Monti, L. G., and Motzkin, S. M. (1976).Biochem. Biophys. Res. Commun. 69 68.

    Google Scholar 

  • Mitchell, P. (1977).FEBS Lett. 78 1.

    Google Scholar 

  • Mitchell, P., and Moyle, J. (1969).Eur. J. Biochem. 9 149.

    Google Scholar 

  • Skulskii, I. A. (1977).Dokl. Akad. Nauk SSSR 232 945.

    Google Scholar 

  • Skulskii, I. A., Glasunov, V. V., Rjabova, I. D., and Gorneva, G. A. (1977).Biokhimiya 42 1637.

    Google Scholar 

  • Skulskii, I. A., Manninen, V., and Järnefelt, J. (1978a).Biochim. Biophys. Acta 506 233.

    Google Scholar 

  • Skulskii, I. A., Savina, M. V., Glasunov, V. V., and Saris, N.-E. L. (1978b).J. Membr. Biol. 44 187.

    Google Scholar 

  • Weast, R. S., and Astle, M. J. (1979). CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, p. F-213.

  • Williams, R. J. P. (1978).FEBS Lett. 85 9.

    Google Scholar 

  • Wikström, M. K. F. (1977).Nature 266 271.

    Google Scholar 

  • Wikström, M. K. F., and Saris, N.-E. L. (1969).Eur. J. Biochem. 9 160.

    Google Scholar 

  • Zak, B., and Cohen, J. (1961).Clin. Chim. Acta 6 665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saris, NE.L., Skulskii, I.A., Savina, M.V. et al. Mechanism of mitochondrial transport of thallous ions. J Bioenerg Biomembr 13, 51–59 (1981). https://doi.org/10.1007/BF00744746

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00744746

Key Words

Navigation