Skip to main content
Log in

Organization and function of cytochromeb and ubiquinone in the cristae membrane of beef heart mitochondria

  • Mini-Reviews
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The arrangement and function of the redox centers of the mammalianbc 1 complex is described on the basis of structural data derived from amino acid sequence studies and secondary structure predictions and on the basis of functional studies (i.e., EPR data, inhibitor studies, and kinetic experiments). Two ubiquinone reaction centers do exist—a QH2 oxidation center situated at the outer, cytosolic surface of the cristae membrane (Q0 center), and a Q reduction center (Q i center) situated more to the inner surface of the cristae membrane. The Q0 center is formed by theb-566 domain of cytochromeb, the FeS protein, and maybe an additional small subunit, whereas the Q i center is formed by theb-562 domain of cytochromeb and presumably the 13.4kDa protein (“QP-C”). The “Q binding proteins” are proposed to be protein subunits of the Q reaction centers of various multiprotein complexes. The path of electron flow branches at the Q0 center, half of the electrons flowing via the high-potential cytochrome chain to oxygen and half of the electrons cycling back into the Q pool via the cytochromeb path connecting the two Q reaction centers. During oxidation of QH2, 2H+ are released to the cytosolic space and during reduction of Q, 2H+ are taken up from the matrix side, resulting in a net transport across the membrane of 2H+ per e flown from QH2 to cytochromec, the H+ being transported across the membrane as H (H+ + e) by the mobile carrier Q. The authors correct their earlier view of cytochromeb functioning as a H+ pump, proposing that the redox-linkedpK changes of the acidic groups of cytochromeb are involved in the protonation/deprotonation processes taking place during the reduction and oxidation of Q. The reviewers stress that cytochromeb is in equilibrium with the Q pool via the Q i center, but not via the Q0 center. Their view of the mechanisms taking place at the reductase is a Q cycle linked to a Q-pool where cytochromeb is acting as an electron pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, W. F., Von Jagow, G., Anke, T., and Steglich, W. (1981).FEBS Lett. 132, 329–333.

    Google Scholar 

  • Berry, E. A., and Trumpower, B. L. (1985).Coenzyme Q (Lenaz, G., ed.), Wiley, Chichester, pp. 365–389.

    Google Scholar 

  • Blum, H., Bowyer, J. R., Cusanovich, M. A., Waring, A. J., and Ohnishi, T. (1983).Biochim. Biophys. Acta 748, 418–428.

    Google Scholar 

  • Borchart, U., Machleidt, W., Schägger, H., Link, T. A., and Von Jagow, G. (1985).FEBS Lett. 191, 125–130.

    Google Scholar 

  • Bowyer, J. R. (1982).Function of Quinones in Energy Conserving Systems (Trumpower, B. L., ed.), Academic Press, New York, pp. 365–375.

    Google Scholar 

  • Bowyer, J. R., and Trumpower, B. T. (1981).J. Biol. Chem. 256, 2245–2251.

    Google Scholar 

  • Crofts, A. R. (1985).The Enzymes of Biological Membranes (Martonosi, A. N., ed.), Plenum Press, New York, pp. 347–374.

    Google Scholar 

  • Crofts, A. R., Meinhardt, S. W., Jones, K. R., and Snozzi, M. (1983).Biochim. Biophys. Acta 723, 202–218.

    Google Scholar 

  • De Vries, S., Albracht, S. P. J., Berden, J. A., and Slater, E. C. (1982).Biochim. Biophys. Acta 681, 41–53.

    Google Scholar 

  • Engel, W. D., Michalski, C., and Von Jagow, G. (1983a).Eur. J. Biochem. 132, 395–402.

    Google Scholar 

  • Engel, W. D., Schägger, H., and Von Jagow, G. (1983b).Hoppe-Seyler's Z. Physiol. Chem. 364, 1753–1763.

    Google Scholar 

  • Garland, P. B., Clegg, R. A., Boxer, D., Dovonic, J. C., and Haddock, B. A. (1975).Electron Transfer Chains and Oxidative Phosphorylation (Quagliariello, E., Papa, S., Palmieri, F., Slater, E. C., and Siliprandi, N., eds.), Elsevier/North-Holland, Amsterdam, pp. 351–358.

    Google Scholar 

  • Gupte, S., Wu, E.-S., Hoechli, L., Hoechli, M., Jacobson, K., Sowers, A. R., and Hackenbrock, C. R. (1984).Proc. Natl. Acad. Sci. U.S.A. 81, 2606–2610.

    Google Scholar 

  • Gutman, M. (1980).Biochim. Biophys. Acta 594, 53–84.

    Google Scholar 

  • Hauska, G., Hurt, E., Gabellini, N., and Lockau, W. (1983).Biochim. Biophys. Acta 726, 97–133.

    Google Scholar 

  • Karlsson, B., Hovmöller, S., Weiss, H., and Leonard, K. (1983).J. Mol. Biol. 165, 287–302.

    Google Scholar 

  • King, T. E. (1982).Function of Quinones in Energy Conserving Systems (Trumpower, B. L., ed.), Academic Press, New York, pp. 3–29.

    Google Scholar 

  • Kröger, A., and Klingenberg, M. (1973a).Eur. J. Biochem. 34, 358–368.

    Google Scholar 

  • Kröger, A., and Klingenberg, M. (1973b).Eur. J. Biochem. 39, 313–323.

    Google Scholar 

  • Lenaz, G., Degli Esposti, M., Fahmy, T., Fato, R., Rugolo, M., and Parenti Castelli, G. (1984).Biomedical and Clinical Aspects of Coenzyme Q (Folkers, K., and Yamamura, Y., eds.), Elsevier, Amsterdam, pp. 33–42.

    Google Scholar 

  • Mahler, H. R., and Perlman, P. S. (1985).The Enzymes of Biological Membranes (Martonosi, A. N., ed.), Plenum Press, New York, pp. 195–227.

    Google Scholar 

  • Meinhardt, S. W., and Crofts, A. R. (1982).FEBS Lett. 149, 217–222.

    Google Scholar 

  • Meinhardt, S. W., and Crofts, A. R. (1983).Biochim. Biophys. Acta 723, 219–230.

    Google Scholar 

  • Mitchell, P. (1975).FEBS Lett. 56, 1–6.

    Google Scholar 

  • Mitchell, P. (1976).J. theor. Biol. 62, 327–367.

    Google Scholar 

  • Moser, C. C., Giangiacomo, K. M., Matsuura, K., de Vries, S., and Dutton, P. L. (1986).Methods Enzymol. 126, 293–305.

    Google Scholar 

  • Nalecz, M. J., and Azzi, A. (1985).Arch. Biochem. Biophys. 240, 921–931.

    Google Scholar 

  • Oettmeier, W., Godde, D., Kunze, B., and Höfle, G. (1985).Biochim. Biophys. Acta 807, 216–219.

    Google Scholar 

  • Ohnishi, T., and Von Jagow, G. (1985).Biophys. J. 47, 241a.

  • Ohnishi, T., Harmon, H. J., and Waring, A. J. (1985).Biochem. Soc. Trans. 13, 607–611.

    Google Scholar 

  • Ovchinikov, Y. A., and Nazhmutdin, G. A. (1985).The Enzymes of Biological Membranes (Martonosi, A. N., ed.), Plenum Press, New York, pp. 555–579.

    Google Scholar 

  • Papa, S. (1976).Biochim. Biophys. Acta 456, 39–84.

    Google Scholar 

  • Ragan, C. I., and Cottingham, I. R. (1985).Biochim. Biophys. Acta 811, 13–31.

    Google Scholar 

  • Rich, P. R. (1983).Biochim. Biophys. Acta 722, 271–280.

    Google Scholar 

  • Rich, P. R. (1984).Biochim. Biophys. Acta 768, 53–79.

    Google Scholar 

  • Robertson, D. E., Giangiacomo, K. M., De Vries, S., Moser, C. C., and Dutton, P. L. (1984).FEBS Lett. 178, 343–350.

    Google Scholar 

  • Robertson, D. E., Moser, C. C., Giangiacomo, K. M., de Vries, S., and Dutton, P. L. (1985).Biophys. J. 47, 240a.

  • Saraste, M. (1984).FEBS Lett. 166, 367–372.

    Google Scholar 

  • Schägger, H., Borchart, U., Aquila, H., Link, T. A., and Von Jagow, G. (1985).FEBS Lett. 190, 89–94.

    Google Scholar 

  • Schägger, H., Link, T. A., Engel, W. D., and Von Jagow, G. (1986).Methods Enzymol. 126, 224–237.

    Google Scholar 

  • Slater, E. C. (1973).Biochim. Biophys. Acta 301, 129–145.

    Google Scholar 

  • Trumpower, B. L., and Katki, A. G. (1975).Biochem. Biophys. Res. Commun. 65, 16–23.

    Google Scholar 

  • Trumpower, B. L., and Edwards, C. A. (1979).J. Biol. Chem. 254, 8679–8706.

    Google Scholar 

  • Urban, P. F., and Klingenberg, M. (1969).Eur. J. Biochem. 9, 519–525.

    Google Scholar 

  • Von Jagow, G., and Engel, W. D. (1980).FEBS Lett. 111, 1–5.

    Google Scholar 

  • Von Jagow, G., and Becker, W. F. (1982).Bull. Mol. Biol. Med. 7, 1–16.

    Google Scholar 

  • Von Jagow, G., and Link, T. A. (1984).Biomedical and Clinical Aspects of Coenzyme Q (Folkers, K., and Yamamura, Y., eds.), Elsevier, Amsterdam, pp. 87–98.

    Google Scholar 

  • Von Jagow, G., and Ohnishi, T. (1985).FEBS Lett. 185, 311–315.

    Google Scholar 

  • Von Jagow, G., and Link, T. A. (1986).Methods Enzymol. 126, 253–271.

    Google Scholar 

  • Von Jagow, G., Schägger, H., Riccio, P., Klingenberg, M., and Kolb, H. J. (1977).Biochim. Biophys. Acta 462, 549–558.

    Google Scholar 

  • Von Jagow, G., Schägger, H., Engel, W. D., Hackenberg, H., and Kolb, H. J. (1978).Energy Conservation in Biological Membranes (Schäfer, G., and Klingenberg, M., eds.), Springer, Berlin, pp. 43–52.

    Google Scholar 

  • Von Jagow, G., Engel, W. D., Schägger, H., and Becker, W. F. (1982).Functions of Quinones in Energy Conserving Systems (Trumpower, B. L., ed.), Academic Press, New York, pp. 351–364.

    Google Scholar 

  • Von Jagow, G., Ljungdahl, P. G., Ohnishi, T., and Trumpower, B. L. (1984).J. Biol. Chem. 259, 6318–6326.

    Google Scholar 

  • Von Jagow, G., Link, T. A., Schägger, H., and Ohnishi, T. (1986).Achievements and Perspectives in Mitochondrial Research, Vol. I (Quagliariello, E., Slater, E. C., Palmieri, F., Saccone, C., and Kroon, A. M., eds.), Elsevier, Amsterdam, pp. 115–126.

    Google Scholar 

  • Wakabayashi, S., Takao, T., Shimonishi, Y., Kuramitsi, S., Matsubara, H., Wang, T., Zhang, Z., and King, T. E. (1985).J. Biol. Chem. 260, 337–343.

    Google Scholar 

  • Wang, T., and King, T. E. (1982).Biochem. Biophys. Res. Commun. 104, 591–596.

    Google Scholar 

  • Widger, W. R., Cramer, W. A., Herrmann, R., and Trebst, A. (1984).Proc. Natl. Acad. Sci. U.S.A. 81, 674–678.

    Google Scholar 

  • Wikström, M., and Krab, K. (1980).Curr. Top. Bioenerg. 10, 51–101.

    Google Scholar 

  • Wikström, M., Saraste, M., and Penttilä, T. (1985).The Enzymes of Biological Membranes (Martonosi, A. N., ed.), Plenum Press, New York, pp. 111–142.

    Google Scholar 

  • Wilson, D. F., and Dutton, P. L. (1970).Biochem. Biophys. Res. Commun. 39, 59–64.

    Google Scholar 

  • Wilson, D. F., Erecinska, M., Leigh, J. S., and Koppelmann, M. (1972).Arch. Biochem. Biophys. 151, 112–121.

    Google Scholar 

  • Yu, C. A., Nagaoka, S., Yu, L., and King, T. E. (1978).Biochem. Biophys. Res. Commun. 82, 1070–1078.

    Google Scholar 

  • Yu, L., and Yu, C. A. (1982).J. Biol. Chem. 257, 10215–10221.

    Google Scholar 

  • Zhu, Q. S., Berden, J. A., de Vries, S., Folkers, K., Porter, T. H., and Slater, E. C. (1982).Biochim. Biophys. Acta 682, 160–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Jagow, G., Link, T.A. & Ohnishi, T. Organization and function of cytochromeb and ubiquinone in the cristae membrane of beef heart mitochondria. J Bioenerg Biomembr 18, 157–179 (1986). https://doi.org/10.1007/BF00743462

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743462

Key Words

Navigation