Skip to main content
Log in

Maple syrup urine disease 1954 to 1993

  • Published:
Journal of Inherited Metabolic Disease

Summary

The clinical, molecular genetic and other biochemical aspects of branched-chain α-ketoacid dehydrogenase defects are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chuang DT, Fisher CW, Lau KS, Griffin TA, Wynn RM, Cox RP (1991) Maple syrup urine disease: Domain structure, mutation and exon skipping in the dihydrolipoyl transacylase (E2) component of the branched-chain α-keto acid dehydrogenase complex.Mol Biol Med 8: 49–63.

    Google Scholar 

  • Chuang JL, Cox RP, Chuang DT (1990) Molecular cloning of the mature E1β subunit of human branched-chain α-ketoacid dehydrogenase complex.FEBS Lett 262: 305–309.

    Google Scholar 

  • Chuang JL, Cox RP, Chuang DT (1993) Characterization of the promoter-regulatory region and structural organization of E1α (BCKDHA) of human branched-chain α-keto acid dehydrogenase complex.J Biol Chem 268: 8309–8316.

    Google Scholar 

  • Cook KG, Lawson R, Yeaman SJ (1983a) Multi-site phosphorylation of bovine kidney branched chain 2-oxoacid dehydrogenase complex.FEBS Lett 157: 59–62.

    Google Scholar 

  • Cook KG, Lawson R, Yeaman SJ, Aitken A (1983b) Amino acid sequence at the major phosphorylation site on bovine kidney branched chain 2-oxoacid dehydrogenase complex.FEBS Lett 164: 47–50.

    Google Scholar 

  • Cook KG, Bradford AP, Yeaman SJ (1985) Resolution and reconstitution of bovine kidney branched-chain 2-oxo acid dehydrogenase complex.Bochem J 225: 731–735.

    Google Scholar 

  • Damuni Z, Reed LJ (1987) Purification and properties of the catalytic subunit of the branched-chain α-ketoacid dehydrogenase phosphatase from bovine kidney mitochondria.J Biol Chem 262: 5129–5132.

    Google Scholar 

  • Dancis J, Levitz M, Miller S, Westall RG (1959) Maple syrup urine disease.Br Med J 1:91–93.

    Google Scholar 

  • Dancis J, Hutzler J, Levitz M (1960) Metabolism of the white blood cells in maple syrup urine disease.Biochim Biophys Acta 43: 342.

    Google Scholar 

  • Danner DJ, Elsas LJ (1989) Disorders of branched chain amino acid and keto acid metabolism. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds.The Metabolic Basis of Inherited Disease, 6th edn. New York: McGraw-Hill, 671–692.

    Google Scholar 

  • Danner DJ, Davidson ED, Elsas LJ (1975) Thiamine increases the specific activity of human liver branched chain α-ketoacid dehydrogenase.Nature 254: 529–530.

    Google Scholar 

  • Danner DJ, Lemmon SK, Besharse JC, Elsas LJ (1979) Purification and characterization of branched chain α-ketoacid dehydrogenase from bovine liver mitochondria.J Biol Chem 254: 5522–5526.

    Google Scholar 

  • Danner DJ, Armstrong N, Heffelfinger SC, Sewell ET, Priest JH, Elsas LJ (1985) Absence of branched chain acyl-transferase as a cause of maple syrup urine disease.J Clin Invest 75: 858–860.

    Google Scholar 

  • Danner DJ, Litwer S, Herring WJ, Pruckler J (1989) Construction and nucleotide sequence of a cDNA encoding the full-length preprotein for human branched chain acyltransferase.J Biol Chem 264: 7742–7746.

    Google Scholar 

  • Dardel F, Davis AL, Laue ED, Perham RN (1993) Three-dimensional structure of the lipoyl domain fromBacillus stearothermophilus pyruvate dehydrogenase multienzyme complex.J Mol Biol 229: 1037–1048.

    Google Scholar 

  • Dariush N, Fisher CW, Cox RP, Chuang DT (1991) Structure of the gene encoding the entire mature E1α subunit of human branched chain α-keto acid dehydrogenase complex.FEBS Lett 291: 376–377.

    Google Scholar 

  • Davie JR, Wynn RM, Cox RP, Chuang DT (1992) Expression and assembly of a functional E1 component (α2β2) of mammalian branched chain α-ketoacid dehydrogenase complex inEscherichia coli.J Biol Chem 267: 16601–16606.

    Google Scholar 

  • DiGeorge AM, Rezvani I, Garibaldi LR, Schwartz M (1982) Prospective study of maple-syrup-urine disease for the first four days of life.N Engl J Med 307: 1492–1495.

    Google Scholar 

  • Duran M, Wadman SK (1991) Thiamine-responsive inborn errors of metabolism.J Inher Metab Dis 8: 70–75.

    Google Scholar 

  • Eisenstein RS, Hoganson G, Miller RH, Harper AE (1991) Altered phosphorylation state of branched-chain 2-oxo acid dehydrogenase in a branched chain acyltransferase deficient human fibroblast cell line.J Inher Metab Dis 14: 37–44.

    Google Scholar 

  • Ellerine NP, Herring WJ, Elsas LJ, McKean MC, Klein PD, Danner DJ (1993) Thiamin-responsive maple syrup urine disease in a patient antigenically missing dihydrolipoamide acyltransferase.Biochem Med Metab Biol 49: 363–374.

    Google Scholar 

  • Elsas LJ, Priest JH, Wheeler FB, Danner DJ, Pask BA (1974) Maple syrup urine disease: Coenzyme function and prenatal monitoring.Metabolism 23: 569–579.

    Google Scholar 

  • Fekete G, Plattner R, Crabb DW, Zhang B, Harris RA (1989) Location of the human gene for the E1 alpha subunit of branched chain keto acid dehydrogenase (BCKDHA) to chromosome 19q13.1-q13.2.Cytogenet Cell Genet 50: 236–237.

    Google Scholar 

  • Fernhoff P, Lubitz D, Danner DJ et al (1985) Thiamine responsive maple syrup urine disease.Pediatr Res 19: 1011–1016.

    Google Scholar 

  • Fisher CR, Chuang JL, Cox RP, Fisher CW, Star RA, Chuang DT (1991a) Maple syrup urine disease in Mennonites. Evidence that the Y393N mutation in E1α impedes assembly of the E1 component of branched-chain α-ketoacid dehydrogenase complex.J Clin Invest. 88: 1034–1037.

    Google Scholar 

  • Fisher CR, Fisher CW, Chuang DT, Cox RP (1991b) Occurrence of a Tyr393 → Asn (Y393N) mutation in the E1α gene of the branched chain α-keto acid dehydrogenase complex in maple syrup urine disease patients from a Mennonite population.Am J Hum Genet 49: 429–434.

    Google Scholar 

  • Fisher CW, Chuang JL, Griffin TA, Lau KS, Cox RP, Chuang DT (1989) Molecular phenotypes in cultured maple syrup urine disease cells. Complete E1α cDNA sequence and mRNA and subunit contents of the human branched chain α-ketoacid dehydrogenase complex.J Biol Chem 264: 3448–3453.

    Google Scholar 

  • Fisher CW, Lau KS, Fisher CR, Wynn RM, Cox RP, Chuang DT (1991) A 17-bp insertion and a Phe215 → Cys missense mutation in the dihydrolipoyl transcylase (E2) mRNA from a thiamine-responsive maple syrup urine disease patient WG-34.Biochem Biophys Res Commun 174: 804–809.

    Google Scholar 

  • Fisher CW, Fisher CR, Chuang JL, Lau KS, Chuang DT, Cox RP (1993) Occurrence of a 2-bp (AT) deletion allele and a nonsense (G-to-T) mutant allele at the E2 (DBT) locus of six patients with maple syrup urine disease: Multiple-exon skipping as a secondary effect of the mutations.Am J Hum Genet 52: 414–424.

    Google Scholar 

  • Goedde HW, Hufner M, Mohlenbeck F, Blume KG (1967) Biochemical studies on branchedchain oxoacid oxidases.Biochim Biophys Acta 132: 524–525.

    Google Scholar 

  • Gropper SS, Naglak MC, Nardella M, Plyler A, Rarback S, Yanniclli S (1993) Nutrient intakes of adolescents with phenylketonuria and infants and children with maple syrup urine disease on semisynthetic diets.J Am Coll Nutr 12: 108–114.

    Google Scholar 

  • Heffelfinger SC, Sewell ET, Danner DJ (1983) Identification of specific subunits of highly purified bovine liver branched-chain ketoacid dehydrogenase.Biochemistry 22: 5519–5522.

    Google Scholar 

  • Heffelfinger SC, Sewell ET, Elsas LJ, Danner DJ (1984) Direct physical evidence for stabilization of branched chain ketoacid dehydrogenase by thiamin pyrophosphate.Am J Hum Genet 36: 802–807.

    Google Scholar 

  • Herring WJ, Litwer S, Weber JL, Danner DJ (1991) Molecular genetic basis of maple syrup urine disease in a family with two defective alleles for branched chain acyltransferase and localization of the gene to human chromosome 1.Am J Hum Genet 48: 342–350.

    Google Scholar 

  • Herring WJ, McKean M, Dracopoli N, Danner DJ (1992) Branched chain acyltransferase absence due to an ALU-based genomic deletion allele and an exon skipping allele in a compound heterozygote proband expressing maple syrup urine disease.Biochim Biophys Acta 1138: 236–242.

    Google Scholar 

  • Hilliges C, Awiszus D, Wendel U (1993) Intellectual performance of children with maple syrup urine disease.Eur J Pediatr 152: 144–147.

    Google Scholar 

  • Hummel KB, Litwer S, Bradford AP, Aitken A, Danner DJ, Yeaman SJ (1988) Nucleotide sequence of a cDNA for branched chain acyltransferase with analysis of the deduced protein structure.J Biol Chem 263: 6165–6168.

    Google Scholar 

  • Hutson SM, Roten S, Kaplan RS (1990) Solubilization and functional reconstitution of the branched-chain α-ketoacid transporter from rat heart mitochondria.Proc Natl Acad Sci USA 87: 1028–1031.

    Google Scholar 

  • Indo Y, Kitano A, Endo F, Akaboshi I, Matsuda I (1987) Altered kinetic properties of the branched-chain α-keto acid dehydrogenase complex due to mutation of the β-subunit of the branched-chain α-keto acid decarboxylase (E1) component in lymphoblastoid cells derived from patients with maple syrup urine disease.J Clin Invest 80: 63–70.

    Google Scholar 

  • Johanning GL, Morris JI, Madhusudhan KT, Samols D, Patel MS (1992) Characterization of the transcriptional regulatory region of the human dihydrolipoamide dehydrogenase gene.Proc Natl Acad Sci 89: 10964–10968.

    Google Scholar 

  • Jones SMA, Yeaman SJ (1986) Oxidative decarboxylation of 4-methylthio-2-oxobutyrate by branched-chain 2-oxoacid dehydrogenase complex.Biochem J 237: 621–623.

    Google Scholar 

  • Lau KS, Chuang JL, Herring WJ, Danner DJ, Cox RP, Chuang DT (1992a) The complete cDNA sequence for dihydrolipoyl transcylase (E2) of human branched chain α-keto acid dehydrogenase complex.Biochim Biophys Acta 1132: 319–321.

    Google Scholar 

  • Lau KS, Herring WJ, Chuang JL, et al (1992b) Structure of the gene encoding dihydrolipoyl transcylase (E2) component of human branched chain α-keto acid dehydrogenase complex and characterization of an E2 pseudogene.J Biol Chem 267: 24090–24096.

    Google Scholar 

  • Litwer S, Danner DJ (1985) Identification of a cDNA clone in λgt11 for the transacylase component of branched chain ketoacid dehydrogenase.Biochem Biophys Res Commun 131: 961–967.

    Google Scholar 

  • Litwer S, Danner DJ (1988) Mitochondrial import and processing of anin vitro synthesized human pre-branched chain acyltransferase fragment.Am J Hum Genet 43: 764–769.

    Google Scholar 

  • Manning-Krieg UC, Scherer PE, Schatz G (1991) Sequential action of mitochondrial chaperones in protein import into the matrix.EMBO J 10: 3273–3280.

    Google Scholar 

  • Matsuda I, Nobukuni Y, Mitsubuchi H et al (1990) A T-to-A substitution in the E1α subunit gene of the branched chain α-ketoacid dehydrogenase complex in two cell lines derived from Mennonite maple syrup urine disease patients.Biochem Biophys Res Commun 172: 646–651.

    Google Scholar 

  • McKean MC, Winkeler KA, Danner DJ (1992) Nucleotide sequence of the 5′ end including the initiation codon of cDNA for the E1α subunit of the human branched chain α-ketoacid dehydrogenase complex.Biochim Biophys Acta 1171: 109–112.

    Google Scholar 

  • Menkes JH (1959) Maple syrup disease. Isolation and identification of organic acids in the urine.Pediatrics 23: 348–353.

    Google Scholar 

  • Menkes JH, Hurst PL, Craig JM (1954) A new syndrome: Progressive familial infantile cerebral dysfunction associated with an unusual urinary substance.Pediatrics 14: 462–467.

    Google Scholar 

  • Mitsubuchi H, Nobukuni Y, Akaboshi I, Indo Y, Endo F, Matsuda I (1991a) Maple syrup urine disease caused by a partial deletion in the inner E2 core domain of the branched chain α-keto acid dehydrogenase complex due to aberrant splicing. A single base deletion at a 5′-splice donor site of an intron of the E2 gene disrupts the consensus sequence in this region.J Clin Invest 87: 1207–1211.

    Google Scholar 

  • Mitsubuchi H, Nobukuni Y, Endo F, Matsuda I (1991b) Structural organization and chromosomal localization of the gene for the E1β subunit of human branched chain α-keto acid dehydrogenase.J Biol Chem 266: 14686–14691.

    Google Scholar 

  • Mitsubuchi H, Matsuda I, Nobukuni Y et al (1992) Gene analysis of Mennonite maple syrup urine disease kindred using primer-specified restriction map modification.J Inher Metab Dis 15: 181–187.

    Google Scholar 

  • Neupert W, Hartl F-U, Craig EA, Pfanner N (1990) How do polypeptides cross the mitochondrial membrane?Cell 63: 447–450.

    Google Scholar 

  • Nobukuni Y, Mitsubuchi H, Endo F, Matsuda I (1989) Complete primary structure of the transacylase (E2b) subunit of the human branched chain α-ketoacid dehydrogenase complex.Biochem Biophys Res Commun 161: 1035–1041.

    Google Scholar 

  • Nobukuni Y, Mitsubuchi H, Endo F, Akaboshi I, Asaka J, Matsuda I (1990) Maple Syrup Urine Disease. Complete primary structure of the E1β subunit of human branched chain α-ketoacid dehydrogenase complex deduced from the nucleotide sequence and a gene analysis of patients with this disease.J Clin Invest 86: 242–247.

    Google Scholar 

  • Nobukuni Y, Mitsubuchi H, Akaboshi I, Indo Y, Endo F, Matsuda I (1991a) Maple syrup urine disease: Clinical and biochemical significance of gene analysis.J Inher Metab Dis 14: 787–792.

    Google Scholar 

  • Nobukuni Y, Mitsubuchi H, Akaboshi I et al (1991b) Maple syrup urine disease. Complete defect of the E1β subunit of the branched chain α-ketoacid dehydrogenase complex due to a deletion of an 11-bp repeat sequence which encodes a mitochondrial targeting leader peptide in a family with the disease.J Clin Invest 87: 1862–1866.

    Google Scholar 

  • Ono K, Hakozaki M, Nishimaki H, Kochi H (1987) Purification and characterization of human liver branched-chain α-ketoacid dehydrogenase complex.Biochem Med Metab Biol 37: 133–141.

    Google Scholar 

  • Otulakowski G, Robinson BH (1987) Isolation and sequence determination of cDNA clones for porcine and human lipoamide dehydrogenase. Homology to other disulfide oxidoreductases.J Biol Chem 262: 17313–17318.

    Google Scholar 

  • Otulakowski G, Robinson BH, Willard HF (1988) Gene for lipoamide dehydrogenase maps to human chromosome 7.Somat Cell Mol Genet 14: 411–414.

    Google Scholar 

  • Paxton R, Harris RA (1984) Regulation of branched-chain α-ketoacid dehydrogenase kinase.Arch Biochem Biophys 231: 48–57.

    Google Scholar 

  • Paxton R, Kuntz M, Harris RA (1986) Phosphorylation sites and inactivation of branched-chain α-ketoacid dehydrogenase isolated from rat heart, bovine kidney, and rabbit liver, kidney, heart, brain, and skeletal muscle.Arch Biochem Biophys 244: 187–201.

    Google Scholar 

  • Pettit FH, Yeaman SJ, Reed LJ (1978) Purification and characterization of branched chain α-ketoacid dehydrogenase complex of bovine kidney.Proc Natl Acad Sci USA 75: 4811–4886.

    Google Scholar 

  • Pfanner N, Weinzierl A (1992) Mechanisms of mitochondrial protein import.Int J Biochem 24: 65–69.

    Google Scholar 

  • Pfanner N, Ostermann J, Rassow J, Hartl F-U, Neupert W (1990) Stress proteins and mitochondrial protein import.Antonie van Leeuwenhoek 58: 191–193.

    Google Scholar 

  • Pons G, Raefsky-Estrin C, Carothers DJ et al (1988) Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes.Proc Natl Acad Sci USA 85: 1422–1426.

    Google Scholar 

  • Popov KM, Zhao Y, Shimomura Y, Kuntz MJ, Harris RA (1992) Branched-chain α-ketoacid dehydrogenase kinase. Molecular cloning, expression and sequence similarity with histidine protein kinase.J Biol Chem 267: 13127–13130.

    Google Scholar 

  • Reed LJ, Hackert ML (1990) Structure-function relationships in dihydrolipoamide acyltransferases.J Biol Chem 265: 8971–8974.

    Google Scholar 

  • Scriver CR, Clow CL, Mackenzie S, Delvin E (1971) Thiamine-responsive maple-syrup-urine disease.Lancet 1, 310–312.

    Google Scholar 

  • Thomas F (1992) Dietary management of inborn errors of amino acid metabolism with protein-modified diets.J Child Neurol 7: S92–111.

    Google Scholar 

  • Treacy E, Clow CL, Reade TR, Chitayat D, Mamer OA, Scriver CR (1992) Maple syrup urine disease: Interrelationships between branched chain amino-, oxo-, and hydroxyacids; implications for treatment; association with CNS dysmyelination.J Inher Metab Dis 15: 121–135.

    Google Scholar 

  • Van Calcar SC, Hardin CO, Davidson SR, Barnes LA, Wolff JA (1992) Case reports of successful pregnancy in women with maple syrup urine disease and propionic acidemia.Am J Med Genet 44: 641–646.

    Google Scholar 

  • Westall RG, Dancis J, Miller S (1957) Maple syrup urine disease.Am J Dis Child 94: 571–572.

    Google Scholar 

  • Yeaman SJ (1986) The mammalian 2-oxoacid dehydrogenases: a complex family.Trends Biochem Sci 11: 293–296.

    Google Scholar 

  • Yeaman SJ (1989) The 2-oxo acid dehydrogenase complexes: recent advances.Biochem J 257: 625–632.

    Google Scholar 

  • Zhang B, Edenberg HJ, Crabb DW, Harris RA (1989) Evidence for both a regulatory mutation and a structural mutation in a family with maple syrup urine disease.J Clin Invest 83: 1425–1429.

    Google Scholar 

  • Zneimer SM, Lau KS, Eddy RL et al (1991) Regional assignment of two genes of the human branched-chain α-keto acid dehydrogenase complex: The E1βBCKDHB) to chromosome 6p21–22 and the E2 gene (DBT) to chromosome 1p31.Genomics 10: 740–747.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peinemann, F., Danner, D.J. Maple syrup urine disease 1954 to 1993. J Inherit Metab Dis 17, 3–15 (1994). https://doi.org/10.1007/BF00735389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00735389

Keywords

Navigation