Skip to main content
Log in

Expression of neutral glycosphingolipids and gangliosides in human skeletal and heart muscle determined by indirect immunofluorescence staining

  • Non-Lectin Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The expression of neutral glycosphingolipids and gangliosides has been studied in human skeletal and heart muscle using indirect immunofluorescence microscopy. Transversal and longitudinal cryosections were immunostained with specific monoclonal and polyclonal antibodies against the neutral glycosphingolipids lactosylceramide, globoside, Forssman glycosphingolipid, gangliotetraosylceramide, lacto-N-neotetraosylceramide and against the gangliosides GM3(Neu5Ac) and GM1(Neu5Ac). To confirm the lipid nature of positive staining, control sections were treated with methanol and chloroform:methanol (1:1) before immunostaining. These controls were found to be either negative or strongly reduced in fluorescence intensity, suggesting that lipid bound oligosaccharides were detected. In human skeletal muscle, lactosylceramide was found to be the main neutral glycosphinogolipid. Globoside was moderately expressed, lacto-N-neotetraosylceramide and gangliotetraosylceramide were minimally expressed and Forssman glycosphingolipid was not detected in human skeletal muscle. The intensities of the immunohistological stains of GM3 and GM1 correlated to the fact that GM3 is the major ganglioside in skeletal muscle whereas GM1 is expressed only weakly. In human heart muscle globoside was the major neutral glycosphingolipid. Lactosylceramide and lacto-N-neotetraosylceramide were moderately expressed, gangliotetraosylceramide was weakly expressed and the Forssman glycosphingolipid was not expressed at all in cardiac muscle. GM3 and GM1 were detected with almost identical intensity. All glycosphingolipids were present in plasma membranes as well as at the intracellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ledeen RW, Yu RK (1982)Methods Enzymol 83:139–91.

    Google Scholar 

  2. Schauer R (1988)Adv Exp Med Biol 228:47–72.

    Google Scholar 

  3. Stults CLM, Sweeley CC, Macher BA (1989)Methods Enzymol 179:167–214.

    Google Scholar 

  4. Karlsson KA (1989)Ann Rev Biochem 58:309–50.

    Google Scholar 

  5. Paulson JC (1985) InThe Receptors, Vol. II (Conn PM, ed.) pp. 131–219. Orlando: Academic Press, p 131–219.

    Google Scholar 

  6. Igarashi Y, Nojiri H, Hanai N, Hakomori S-I (1989)Methods Enzymol 179:521–41.

    Google Scholar 

  7. Hakomori S-I (1990)J Biol Chem 265:18713–16.

    Google Scholar 

  8. Zeller CB, Marchase RB (1992)Am J Physiol 262 (Cell Physiol 31): C1341–55.

    Google Scholar 

  9. Hakomori S-I (1981)Ann Rev Biochem 50:733–64.

    Google Scholar 

  10. Svennerholm L, Bruce Å, Månsson J-E, Rynmark BM, Vanier M-T (1972)Biochim Biophys Acta 280:626–36.

    Google Scholar 

  11. Nakamura K, Ariga T, Yahagi T, Miyatake T, Suzuki A, Yamakawa T (1983)J Biochem 94:1359–65.

    Google Scholar 

  12. Chien J-L, Hogan EL (1980)Biochim Biophys Acta 620:454–61.

    Google Scholar 

  13. Puro K, Maury P, Huttunen JK (1969)Biochim Biophys Acta 187:230–35.

    Google Scholar 

  14. Marcus DM, Janis R (1970)J Immunol 104:1530–39.

    Google Scholar 

  15. Katz HR, Austen KF (1986)J Immunol 136:3819–24.

    Google Scholar 

  16. Symington FW, Murray WA, Bearman SI, Hakomori S-I (1987)J Biol Chem 262:11356–63.

    Google Scholar 

  17. Symington FW (1989)J Immunol 142:2784–90.

    Google Scholar 

  18. Gillard BK, Thurmon LT, Marcus DM (1993)Glycobiology 3:57–67.

    Google Scholar 

  19. Gillard BK, Heath JP, Thurmon LT, Marcus DM (1991)Exp Cell Res 192:433–44.

    Google Scholar 

  20. Čačić M, Neumann U, Kračun I, Müthing J (1993)Biol Chem Hoppe-Seyler 374:841.

    Google Scholar 

  21. Kasai M, Iwamori M, Nagai Y, Okumura K, Tada T (1980)Eur J Immunol 10:175–80.

    Google Scholar 

  22. Bethke U, Müthing J, Schauder B, Conradt P, Mühlradt PF (1986)J Immunol Methods 89:111–16.

    Google Scholar 

  23. Müthing J, Mühlradt PF (1988)Anal Biochem 173:10–17.

    Google Scholar 

  24. Müthing J, Neumann U (1993)Biomed Chromatogr 7:158–61.

    Google Scholar 

  25. Müthing J, Maurer U, Šoštarić K, Neumann U, Brandt H, Duvar S, Peter-Katalinić J, Weber-Schürholz S (1994)J Biochem 115:248–56.

    Google Scholar 

  26. Müthing J, Steuer H, Peter-Katalinić J, Marx U, Bethke U, Neumann U, Lehmann J (1994)J Biochem 116:64–73.

    Google Scholar 

  27. Müthing J, Pörtner A, Jäger V (1992)Glycoconjugate J 9:265–73.

    Google Scholar 

  28. Young WW Jr., Portoukalian J, Hakomori S-I (1981)J Biol Chem 256:10967–72.

    Google Scholar 

  29. Bethke U, Kniep B, Mühlradt PF (1987)J Immunol 138:4329–35.

    Google Scholar 

  30. Suzuki A, Yamakawa T (1981)J Biochem 90:1541–4.

    Google Scholar 

  31. Chien J-L, Hogan EL (1980) InCell Surface Glycolipids (Sweeley CC, ed.) pp. 135–48. NY: American Chemical Society.

    Google Scholar 

  32. Chien J-L, Hogan EL (1983)J Biol Chem 258:10727–30.

    Google Scholar 

  33. Dasgupta S, Chien J-L, Hogan EL, van Halbeek H (1991)J Lipid Res 32:499–506.

    Google Scholar 

  34. Leskawa KC, Hogan EL (1990)Mol Cell Biochem 96:163–73.

    Google Scholar 

  35. Lassaga FE, Albarracin de Lassaga I, Caputto R (1972)J Lipid Res 13:810–15.

    Google Scholar 

  36. Iwamori M, Nagai Y (1978)J Biochem 84:1609–15.

    Google Scholar 

  37. Iwamori M, Nagai Y (1981)J Biochem 89:1253–64.

    Google Scholar 

  38. Clark GF, Smith PB (1983)Biochim Biophys Acta 755:56–64.

    Google Scholar 

  39. Nakamura K, Nagashima M, Sekine M, Igarashi M, Ariga T, Atsumi T, Miyatake T, Suzuki A, Yamakawa T (1983)Biochim Biophys Acta 752:291–300.

    Google Scholar 

  40. Ariga T, Sekine M, Nakamura K, Igarashi M, Nagashima M, Miyatake T, Suzuki A, Yamakawa T (1983)J Biochem 93:889–93.

    Google Scholar 

  41. Leskawa KC, Buse PE, Hogan EL, Garvin AJ (1984)Neurochem Pathol 2:19–29.

    Google Scholar 

  42. Levis GM, Karli JN, Moulopoulos SD (1979)Lipids 14:9–14.

    Google Scholar 

  43. Ogawa K, Abe T, Yoshimura K (1985)Jpn J Exp Med 55:123–27.

    Google Scholar 

  44. Li Y-T, Månson J-E, Vanier M-T, Svennerholm L (1973)J Biol Chem 248:2634–36.

    Google Scholar 

  45. Maurer U, Weber-Schürholz S, Neumann U, Brandt H, Müthing J (1993)Biol Chem Hoppe-Seyler 374:951–52.

    Google Scholar 

  46. Chan K-FJ (1989)J Biol Chem 264:18632–37.

    Google Scholar 

  47. Chan K-FJ, Liu Y (1991)Glycobiology 1:193–203.

    Google Scholar 

  48. Slomiany BL, Liu J, Fekete Z, Yao P, Slomiany A (1992)Int J Biochem 24:1289–94.

    Google Scholar 

  49. Hilbush BS, Levine JM (1991)Proc Natl Acad Sci USA 88:5616–20.

    Google Scholar 

  50. Reuter G, Schauer R (1988)Glycoconjugate J 5:133–35.

    Google Scholar 

  51. IUPAC-IUB Commission on Biochemical Nomenclature (1977)Eur J Biochem 79:11–21.

    Google Scholar 

  52. Svennerholm L (1963)J Neurochem 10:613–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations used: BSA, bovine serum albumin; DAPI, 4′,6-diamidine-2-phenylindole-dihydrochloride; DTAF, fluorescein isothiocyanate derivative; GSL(s), glycosphingolipid(s); Neu5Ac,N-acetylneuraminic acid [50]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [51] and the nomenclature of Svennerholm [52]. Lactosylceramide or LacCer, Galβ1-4Glcβ1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAcβ1-4Galβ1-4Glcβ1-1Cer; globotriaosylceramide or GbOse3Cer, Galαl-4Galβl-4Glcβl-1Cer; gangliotetraosylceramide or GgOse4Cer, Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer; globotetraosylceramide or GbOse4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1Cer; Forssman GSL or GbOse3Cer, GalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4Gleβ1-1Cer; GM3, II3Neu5Ac-LacCer; GM2, II3Neu5Ac-GgOse3Cer; GM1, II3Neu5Ac-GgOse4Cer; GD3 II3(Neu5Ac)2-LacCer; GD2, II3(Neu5Ac)2-GgOse3Cer; GD1a, IV3Neu5Ac, II3Neu5Ac-GgOse4Cer; GD1b, II3(Neu5Ac)2-GgOse4Cer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čačić, M., Müthing, J., Kračun, I. et al. Expression of neutral glycosphingolipids and gangliosides in human skeletal and heart muscle determined by indirect immunofluorescence staining. Glycoconjugate J 11, 477–485 (1994). https://doi.org/10.1007/BF00731284

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731284

Keywords

Navigation