Skip to main content

Histochemical and Immunohistochemical Methods for the Identification of Proteoglycans

  • Protocol
  • First Online:
Histochemistry of Single Molecules

Abstract

Proteoglycans (PGs) are non-fibrillar extracellular matrix (ECM) molecules composed by a protein core and glycosaminoglycan (GAG) chains. These molecules are present in all tissues playing essential structural, biomechanical, and biological roles. In addition, PGs can regulate cell behavior due to their versatility and ability to interact with other ECM molecules, growth factors, and cells. The distribution of PGs can be evaluated by histochemical and immunohistochemical methods. Histochemical methods aimed to provide a useful overview of the presence and distribution pattern of certain groups of PGs. In contrast, immunohistochemical procedures aimed the identification of highly specific target molecules. In this chapter we described Alcian Blue, Safranin O, and Toluidine Blue histochemical methods for the screening of PGs in tissue sections. Finally, we describe the immunohistochemical procedures for specific identification of PGs (decorin, biglycan, and versican) in formaldehyde-fixed and paraffin-embedded tissues.

Víctor Carriel and Sebastián San Martín share senior authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Junqueira LCU, Carneiro J (2005) Basic histology: text and atlas. McGraw-Hill Medical, New York

    Book  Google Scholar 

  2. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schaefer L, Schaefer RM (2010) Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 339:237–246

    Article  CAS  PubMed  Google Scholar 

  4. Krusius T, Ruoslahti E (1986) Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc Natl Acad Sci U S A 83:7683–7687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fisher LW, Heegaard AM, Vetter U, Vogel W, Just W, Termine JD et al (1991) Human biglycan gene. Putative promoter, intron-exon junctions, and chromosomal localization. J Biol Chem 266:14371–14277

    Article  CAS  PubMed  Google Scholar 

  6. Hocking AM, Shinomura T, McQuillan DJ (1998) Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol 17:1–19

    Article  CAS  PubMed  Google Scholar 

  7. Iozzo RV (1999) The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 274:18843–18846

    Article  CAS  PubMed  Google Scholar 

  8. San Martin S, Soto-Suazo M, De Oliveira SF, Aplin JD, Abrahamsohn P, Zorn TM (2003) Small leucine-rich proteoglycans (SLRPs) in uterine tissues during pregnancy in mice. Reproduction 125:585–595

    Article  CAS  PubMed  Google Scholar 

  9. De Luca A, Santra M, Baldi A, Giordano A, Iozzo RV (1996) Decorin-induced growth suppression is associated with up-regulation of p21, an inhibitor of cyclin-dependent kinases. J Biol Chem 271:18961–18965

    Article  PubMed  Google Scholar 

  10. Kolb M, Margetts PJ, Sime PJ, Gauldie J (2001) Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung. Am J Physiol Lung Cell Mol Physiol 280:L1327–L1334

    Article  CAS  PubMed  Google Scholar 

  11. Santra M, Mann DM, Mercer EW, Skorski T, Calabretta B, Iozzo RV (1997) Ectopic expression of decorin protein core causes a generalized growth suppression in neoplastic cells of various histogenetic origin and requires endogenous p21, an inhibitor of cyclin-dependent kinases. J Clin Invest 100:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moscatello DK, Santra M, Mann DM, McQuillan DJ, Wong AJ, Iozzo RV (1998) Decorin suppresses tumor cell growth by activating the epidermal growth factor receptor. J Clin Invest 101:406–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oldberg A, Antonsson P, Lindblom K, Heinegard D (1989) A collagen-binding 59-kd protein (fibromodulin) is structurally related to the small interstitial proteoglycans PG-S1 and PG-S2 (decorin). EMBO J 8:2601–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rada JA, Cornuet PK, Hassell JR (1993) Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Exp Eye Res 56:635–648

    Article  CAS  PubMed  Google Scholar 

  15. LeBaron RG, Zimmermann DR, Ruoslahti E (1992) Hyaluronate binding properties of versican. J Biol Chem 267:10003–10010

    Article  CAS  PubMed  Google Scholar 

  16. Yamagata M, Suzuki S, Akiyama SK, Yamada KM, Kimata K (1989) Regulation of cell-substrate adhesion by proteoglycans immobilized on extracellular substrates. J Biol Chem 264:8012–8018

    Article  CAS  PubMed  Google Scholar 

  17. Perris R, Johansson S (1990) Inhibition of neural crest cell migration by aggregating chondroitin sulfate proteoglycans is mediated by their hyaluronan-binding region. Dev Biol 137:1–12

    Article  CAS  PubMed  Google Scholar 

  18. Yamaguchi Y, Ruoslahti E (1988) Expression of human proteoglycan in Chinese hamster ovary cells inhibits cell proliferation. Nature 336:244–246

    Article  CAS  PubMed  Google Scholar 

  19. Iozzo RV, Cohen IR, Grassel S, Murdoch AD (1994) The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302(Pt 3):625–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giachini FR, Carriel V, Capelo LP, Tostes RC, Carvalho MH, Fortes ZB et al (2008) Maternal diabetes affects specific extracellular matrix components during placentation. J Anat 212:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Godoy-Guzman C, Nunez C, Orihuela P, Campos A, Carriel V (2018) Distribution of extracellular matrix molecules in human uterine tubes during the menstrual cycle: a histological and immunohistochemical analysis. J Anat 233:73–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garcia-Martinez L, Campos F, Godoy-Guzman C, Del Carmen Sanchez-Quevedo M, Garzon I, Alaminos M et al (2017) Encapsulation of human elastic cartilage-derived chondrocytes in nanostructured fibrin-agarose hydrogels. Histochem Cell Biol 147:83–95

    Article  CAS  PubMed  Google Scholar 

  23. Ortiz-Arrabal O, Carmona R, Garcia-Garcia OD, Chato-Astrain J, Sanchez-Porras D, Domezain A et al (2021) Generation and evaluation of novel biomaterials based on decellularized sturgeon cartilage for use in tissue engineering. Biomedicine 9:775

    CAS  Google Scholar 

  24. Bonhome-Espinosa AB, Campos F, Durand-Herrera D, Sanchez-Lopez JD, Schaub S, Duran JDG et al (2020) In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering. J Mech Behav Biomed Mater 104:103619

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez-Porras D, Durand-Herrera D, Paes AB, Chato-Astrain J, Verplancke R, Vanfleteren J et al (2021) Ex vivo generation and characterization of human hyaline and elastic cartilaginous microtissues for tissue engineering applications. Biomedicine 9:292

    CAS  Google Scholar 

  26. Suvarna SK, Layton C, Bancroft JD (2013) Bancroft’s theory and practice of histological techniques. Churchill Livingstone/Elsevier, Oxford

    Google Scholar 

  27. Kiernan JA (2008) Histological and histochemical methods: theory and practice. Scion, Bloxham, Oxfordshire

    Google Scholar 

  28. Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V (2021) Basic quality controls used in skin tissue engineering. Life (Basel) 11:1033

    CAS  Google Scholar 

  29. San Martin S, Alaminos M, Zorn TM, Sanchez-Quevedo MC, Garzon I, Rodriguez IA et al (2013) The effects of fibrin and fibrin-agarose on the extracellular matrix profile of bioengineered oral mucosa. J Tissue Eng Regen Med 7:10–19

    Article  CAS  PubMed  Google Scholar 

  30. Hyllested JL, Veje K, Ostergaard K (2002) Histochemical studies of the extracellular matrix of human articular cartilage – a review. Osteoarthr Cartil 10:333–343

    Article  CAS  Google Scholar 

  31. Prophet EB, Mills B, Arrington JB, Sobin LH (eds) (1994) Laboratory methods in histotechnology. American Registry of Pathology, Washington

    Google Scholar 

Download references

Acknowledgments

Methods described in this chapter were supported by the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad (Instituto de Salud Carlos III), Grants No FIS PI17-0393, FIS PI20-0318 co-financed by the “Fondo Europeo de Desarrollo Regional ERDF-FEDER European Union”; Grant No P18-RT-5059 by Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020), Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, España; and Grant A-CTS-498-UGR18 by Programa Operativo FEDER Andalucía 2014–2020, Universidad de Granada, Junta de Andalucía, España, co-funded by ERDF-FEDER, the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Carriel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sánchez-Porras, D., Varas, J., Godoy-Guzmán, C., Bermejo-Casares, F., San Martín, S., Carriel, V. (2023). Histochemical and Immunohistochemical Methods for the Identification of Proteoglycans. In: Pellicciari, C., Biggiogera, M., Malatesta, M. (eds) Histochemistry of Single Molecules. Methods in Molecular Biology, vol 2566. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2675-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2675-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2674-0

  • Online ISBN: 978-1-0716-2675-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics