Skip to main content
Log in

Creatine kinase as an intracellular regulator

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Several recent studies have demonstrated the presence of creatine kinase and of phosphorylcreatine in a variety of cells besides striated muscle and brain cells. The total creatine kinase and phosphagen levels in these cells encompass a wide range of values. The available data are collected in this article to demonstrate that the variation of the enzyme and phosphagen concentrations is not random but that the two are interrelated. With both the major isoenzymes of creatine kinase, namely the muscle type and the brain type, the basal levels of phosphorylcreatine follow closely the cellular creatine kinase levels. A hypothesis is presented in which the enzyme itself is the major determinant of phosphorylcreatine content by virtue of its ability to act as an intracellular binding protein for creatine derived from extracellular fluid, and also for cellular ADP. The proposed mechanism further predicts that in cells that contain high levels of actin and thus sequester the cytoplasmic free ADP (e.g. most muscle cells), a high level of creatine kinase can effectively regulate the myokinase reaction by its ability to bind ADP. The net effect of such regulation is to conserve the adenine nucleotide pools in the cell. The evolutionary advantage of these two regulatory functions of creatine kinase in terms of energy conservation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANNESLEY, T. M. & WALKER, J. B. (1978) Formation and utilization of novel high energy reservoir in Ehrlich ascites tumor cells.J. biol. Chem. 253, 1820–25.

    Google Scholar 

  • ATKINSON, D. E. (1977)Cellular Energy Metabolism and its Regulation, pp. 209–211. New York: Academic Press.

    Google Scholar 

  • BAKER, Z. & MILLER, B. F. (1939) Studies of the metabolism of creatine and creatinine.J. biol. Chem. 130, 393–7.

    Google Scholar 

  • BUTLER, T. M. & SIEGMAN, M. J. (1976) Chemical changes in rabbit myometrium associated with estrogen treatment.Fed. Proc. 35, 776 (Abstract).

    Google Scholar 

  • BUTLER, T. M., SIEGMAN, M. J., MOORES, S. & DAVIES, R. E. (1978) Chemical energetics of single isometric tetani in mammalian smooth muscle.Am. J. Physiol. 235, C1–7.

    Google Scholar 

  • CROW, M. T. & KUSHMERICK, M. J. (1982) Chemical energetics of slow and fast twitch muscles of the mouse.J. gen. Physiol. 79, 147–66.

    Google Scholar 

  • CURTIN, N. A. & WOLEDGE, R. C. (1975) Energy balance in DNFB-treated and untreated muscle.J. Physiol. 246, 737–52.

    Google Scholar 

  • DAEMERS-LAMBERT, C. (1977) Mechano-chemical coupling in smooth muscle. InBiochemistry of Smooth Muscle (edited by STEPHENS, L.), pp. 51–82. Baltimore: University Park Press.

    Google Scholar 

  • EGGLETON, P. (1930) Diffusion of urea and creatine through muscle.J. Physiol. 70, 294–8.

    Google Scholar 

  • EPPENBERGER, H. M., DAWSON, D. M. & KAPLAN, N. O. (1967) Comparative enzymology of creatine kinase.J. biol. Chem. 212, 204–9.

    Google Scholar 

  • FITCH, C. D., SHIELDS, R. P., PAYNE, W. F. & DACUS, J. M. (1968) Creatine metabolism in skeletal muscle.J. biol. Chem. 243, 2024–7.

    Google Scholar 

  • FOCANT, B. & WATTS, D. C. (1973) Properties and mechanism of action of creatine kinase.Biochem. J. 135, 265–76.

    Google Scholar 

  • GADIAN, D. G., RADDA, G. K., CHANCE, E. M., DAWSON, M. J. & WILKIE, D. R. (1981) The activity of creatine kinase studied by saturation transfer of31P magnetic resonance.Biochem. J. 194, 218–25.

    Google Scholar 

  • HAMOIR, G. (1977) Biochemistry of the myometrium. InBiology of the Uterus (edited by WYNN, R. P.), p. 381. New York: Plenum.

    Google Scholar 

  • HOBERMAN, H. D., SIMS, A. H. & ENGLESTROM, W. W. (1948) The effect of methyl testosterone on the rate of synthesis of creatine.J. biol. Chem. 172, 111–6.

    Google Scholar 

  • IYENGAR, M. R., FLUELLEN, C. E. & IYENGAR, C. W. L. (1980) Increased creatine kinase in the hormone stimulated smooth muscle of the bovine uterus.Biochem. Biophys. Res. Commun. 94, 948–54.

    Google Scholar 

  • IYENGAR, M. R., FLUELLEN, C. E. & IYENGAR, C. W. L. (1982) Creatine kinase from the bovine myometrium: purification and characterization.J. Musc. Res. Cell Motility 3, 231–46.

    Google Scholar 

  • IYENGAR, M. R. & IYENGAR, W. C. L. (1979) Creatine kinase during growth and development of the uterine smooth muscle. InMotility in Cell Function (edited by PEPE, F. A.), pp. 423–5. New York: Academic Press.

    Google Scholar 

  • IYENGAR, M. R., IYENGAR, C. W. L., CHEN, H. Y., BRINSTER, R. L., BORNSLAEGER, E. & SCHULTZ, R. M. (1983) Expression of creatine kinase isoenzymes during oogenesis and embryogenesis in the mouse.Devl Biol. 90, 263–8.

    Google Scholar 

  • JAMES, E. & MORRISON, J. F. (1970) The reaction of nucleotide substrate analogues with adenosine triphosphate-creatine phosphotransferase.J. biol. Chem. 241, 4758–70.

    Google Scholar 

  • KEUTEL, H. J., OKABI, K., JACOB, H. K., ZITTER, F., MALAND, L. & KUBY, S. A. (1972) Studies on adenosine triphosphate transphosphorylase XI.Archs Biochem. Biophys. 15, 648–78.

    Google Scholar 

  • KOPP, S. J., GILONEK, T. & GREINER, J. V. (1982) Interspecies variation in mammalian lens metabolites.Science 215, 1622–5.

    Google Scholar 

  • KUSHMERICK, M. J. & DAVIES, R. E. (1969) The chemical energetics of muscle contraction II.Proc. R. Soc., Ser. B 174, 315–53.

    Google Scholar 

  • LEE, Y. C. P. & WISSCHER, M. B. (1961) On the state of creatine in heart muscle.Proc. natn. Acad. Sci. U.S.A. 47, 1510–5.

    Google Scholar 

  • LEH, W. & HENKEL, E. (1965) Cehalt und Verteilung von Phosphotransferase in Menschliche Skelett-und Uterusmuskulatur.Z. Geburtshilfe Gynaekol. 163, 279–88.

    Google Scholar 

  • LOWENSTEIN, J. M. (1972) Purine nucleoside cycle.Physiol. Rev. 52, 383–407.

    Google Scholar 

  • NEWSHOLME, E. A., BEIS, I., LEECH, A. R. & ZAMMIT, V. A. (1978) The role of creatine kinase in muscle.Biochem. J. 172, 533–7.

    Google Scholar 

  • NODA, L. (1973) Adenylate kinase. InThe Enzymes, Vol. 8 (edited by BOYER, P. D.), pp. 298–301. New York: Academic Press.

    Google Scholar 

  • NUCCITELLI, R., WEBB, D. J., LAGIER, S. T. & MATSON, G. B. (1981)31P NMR reveals increased intracellular pH after fertilization inXenopus eggs.Proc. natn. Acad. Sci. U.S.A. 78, 4421–5.

    Google Scholar 

  • REIS, N. A. & KAYE, A. M. (1981) Identification of the major component of the estrogen induced protein of the rat uterus as the BB isoenzyme of creatine.J. biol. Chem. 256, 5714–9.

    Google Scholar 

  • SERAYDARIAN, K., MOMMAERTS, W. F. H. M. & WALNER, A. (1962) The amounts and compartmentation of ADP in muscle.Biochim. Biophys. Acta 65, 443–60.

    Google Scholar 

  • SHATTON, J. B., MORRIS, H. P. & WEINHOUSE, S. (1979) Creatine kinase activity and isoenzyme compartmentation of ADP in muscle.Biochim. Biophys. Acta 65, 443–60.

    Google Scholar 

  • SIESJO, K. (1978)Brain Energy Metabolism. New York: Wiley.

    Google Scholar 

  • THOMAS, J. (1956) The composition of isolated cerebral tissues: Creatine.Biochem. J. 64, 335–9.

    Google Scholar 

  • TSEUNG, S. H. (1976) Creatine kinase isoenzyme patterns in human tissues obtained by surgery.Clin. Chem. 22, 173–5.

    Google Scholar 

  • WALKER, J. B. (1979) Creatine biosynthesis, regulation, and function. InAdvances in Enzymology (edited by F. F. NORD and MEISTER, A.), Vol. 50, pp. 178–241. New York: Academic Press.

    Google Scholar 

  • WALLIMAN, T., TURNER, D. C. & EPPENBERGER, H. M. (1977) Localization of creatine kinase isozymes in myofibrils.J. Cell Biol. 75, 297–317.

    Google Scholar 

  • WATTS, D. C. (1973) Creatine Kinase. InThe Enzymes (edited by BOYER, P. D.), pp. 412–30. New York: Academic Press.

    Google Scholar 

  • YUSHOK, W. D. (1971) Mechanisms of adenine nucleotide metabolism in ascites tumor cells.J. biol. Chem. 246, 1607–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyengar, M.R. Creatine kinase as an intracellular regulator. J Muscle Res Cell Motil 5, 527–534 (1984). https://doi.org/10.1007/BF00713259

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713259

Keywords

Navigation