Skip to main content

Regulation of Sodium-Calcium Exchanger Activity by Creatine Kinase

  • Chapter
  • First Online:
Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

It has been shown that in rat heart NCX1 exists in a macromolecular ­complex including PKA, PKA-anchoring protein, PKC, and phosphatases PP1 and PP2A. In addition, several lines of evidence suggest that the interactions of the exchanger with other molecules are closely associated with its function in regulation of [Ca2+]i. NCX contains a large intracellular loop (NCXIL) that is responsible for regulating NCX activity. We used the yeast two-hybrid method to screen a human heart cDNA library and found that the C-terminal region of sarcomeric mitochondrial creatine kinase (sMiCK) interacted with NCX1IL. Among the four creatine kinase (CK) isozymes, both sMiCK and the muscle-type cytosolic creatine kinase (CKM) co-immunoprecipitated with NCX1. Both sMiCK and CKM were able to produce a recovery in the decreased NCX1 activity that was lost under energy-compromised conditions. This regulation is mediated through a putative PKC phosphorylation site of sMiCK and CKM. The catalytic activity of sMiCK and CKM is not required for their regulation of NCX1 activity. Our results suggest a novel mechanism for the regulation of NCX1 activity and a novel role for CK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G.M. Besserer, M. Ottolia, D.A. Nicoll, V. Chaptal, D. Cascio, K.D. Philipson, J. Abramson, The second Ca2+-binding domain of the Na+ Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proc. Natl. Acad. Sci. U. S. A. 104, 18467–18472 (2007)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)

    PubMed  CAS  Google Scholar 

  • M.P. Blaustein, W.F. Goldman, G. Fontana, B.K. Krueger, E.M. Santiago, T.D. Steele, D.N. Weiss, P.J. Yarowsky, Physiological roles of the sodium-calcium exchanger in nerve and muscle. Ann. N. Y. Acad. Sci. 639, 254–274 (1991)

    Article  PubMed  CAS  Google Scholar 

  • Y.J. Chern, S.H. Chueh, Y.J. Lin, C.M. Ho, L.S. Kao, Presence of Na+/Ca2+ exchange activity and its role in regulation of intracellular calcium concentration in bovine adrenal chromaffin cells. Cell Calcium 13, 99–106 (1992)

    Article  PubMed  CAS  Google Scholar 

  • C.H. Cho, S.S. Kim, M.J. Jeong, C.O. Lee, H.S. Shin, The Na+-Ca2+ exchanger is essential for embryonic heart development in mice. Mol. Cells 10, 712–722 (2000)

    PubMed  CAS  Google Scholar 

  • M. Condrescu, J.P. Gardner, G. Chernaya, J.F. Aceto, C. Kroupis, J.P. Reeves, ATP-dependent regulation of sodium-calcium exchange in Chinese hamster ovary cells transfected with the bovine cardiac sodium-calcium exchanger. J. Biol. Chem. 270, 9137–9146 (1995)

    Article  PubMed  CAS  Google Scholar 

  • R. DiPolo, L. Beauge, Phosphoarginine stimulation of Na  +  -Ca2+ exchange in squid axons–a new pathway for metabolic regulation? J. Physiol. 487(Pt 1), 57–66 (1995)

    PubMed  CAS  Google Scholar 

  • R. DiPolo, L. Beauge, Metabolic pathways in the regulation of invertebrate and vertebrate Na+/Ca2+ exchange. Biochim. Biophys. Acta 1422, 57–71 (1999)

    Article  PubMed  CAS  Google Scholar 

  • R. DiPolo, L. Beauge, Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86, 155–203 (2006)

    Article  PubMed  CAS  Google Scholar 

  • R. DiPolo, G. Berberian, D. Delgado, H. Rojas, L. Beauge, A novel 13 kDa cytoplasmic soluble protein is required for the nucleotide (MgATP) modulation of the Na+/Ca2+ exchange in squid nerve fibers. FEBS Lett. 401, 6–10 (1997)

    Article  PubMed  CAS  Google Scholar 

  • A.E. Doering, D.A. Nicoll, Y. Lu, L. Lu, J.N. Weiss, K.D. Philipson, Topology of a functionally important region of the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 273, 778–783 (1998)

    Article  PubMed  CAS  Google Scholar 

  • M. Eder, K. Fritz-Wolf, W. Kabsch, T. Wallimann, U. Schlattner, Crystal structure of human ubiquitous mitochondrial creatine kinase. Proteins 39, 216–225 (2000a)

    Article  PubMed  CAS  Google Scholar 

  • M. Eder, M. Stolz, T. Wallimann, U. Schlattner, A conserved negatively charged cluster in the active site of creatine kinase is critical for enzymatic activity. J. Biol. Chem. 275, 27094–27099 (2000b)

    PubMed  CAS  Google Scholar 

  • B.N. Eigel, H. Gursahani, R.W. Hadley, Na+/Ca2+ exchanger plays a key role in inducing apoptosis after hypoxia in cultured guinea pig ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 287, H1466–H1475 (2004)

    Article  PubMed  CAS  Google Scholar 

  • R.A. Haworth, A.V. Biggs, Effect of ATP depletion on kinetics of Na+/Ca2+ exchange-mediated Ca2+ influx in Na+-loaded heart cells. J. Mol. Cell. Cardiol. 29, 503–514 (1997)

    Article  PubMed  CAS  Google Scholar 

  • D.W. Hilgemann, Cytoplasmic ATP-dependent regulation of ion transporters and channels: mechanisms and messengers. Annu. Rev. Physiol. 59, 193–220 (1997)

    Article  PubMed  CAS  Google Scholar 

  • A. Ikari, H. Sakai, N. Takeguchi, Protein kinase C-mediated up-regulation of Na+/Ca2+-exchanger in rat hepatocytes determined by a new Na+/Ca2+-exchanger inhibitor, KB-R7943. Eur. J. Pharmacol. 360, 91–98 (1998)

    Article  PubMed  CAS  Google Scholar 

  • T. Iwamoto, S. Wakabayashi, M. Shigekawa, Growth factor-induced phosphorylation and activation of aortic smooth muscle Na+/Ca2+ exchanger. J. Biol. Chem. 270, 8996–9001 (1995)

    Article  PubMed  CAS  Google Scholar 

  • T. Iwamoto, Y. Pan, S. Wakabayashi, T. Imagawa, H.I. Yamanaka, M. Shigekawa, Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C. J. Biol. Chem. 271, 13609–13615 (1996)

    Article  PubMed  CAS  Google Scholar 

  • T. Iwamoto, S. Kita, A. Uehara, Y. Inoue, Y. Taniguchi, I. Imanaga, M. Shigekawa, Structural domains influencing sensitivity to isothiourea derivative inhibitor KB-R7943 in cardiac Na+/Ca2+ exchanger. Mol. Pharmacol. 59, 524–531 (2001)

    PubMed  CAS  Google Scholar 

  • L.S. Kao, Calcium homeostasis in digitonin-permeabilized bovine chromaffin cells. J. Neurochem. 51, 221–227 (1988)

    Article  PubMed  CAS  Google Scholar 

  • L.S. Kao, N.S. Cheung, Mechanism of calcium transport across the plasma membrane of bovine chromaffin cells. J. Neurochem. 54, 1972–1979 (1990)

    Article  PubMed  CAS  Google Scholar 

  • P. Kofuji, W.J. Lederer, D.H. Schulze, Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. J. Biol. Chem. 269, 5145–5149 (1994)

    PubMed  CAS  Google Scholar 

  • I. Komuro, K.E. Wenninger, K.D. Philipson, S. Izumo, Molecular cloning and characterization of the human cardiac Na+/Ca2+ exchanger cDNA. Proc. Natl. Acad. Sci. U. S. A. 89, 4769–4773 (1992)

    Article  PubMed  CAS  Google Scholar 

  • D.O. Levitsky, D.A. Nicoll, K.D. Philipson, Identification of the high affinity Ca2+-binding domain of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 269, 22847–22852 (1994)

    PubMed  CAS  Google Scholar 

  • Z. Li, D.A. Nicoll, A. Collins, D.W. Hilgemann, A.G. Filoteo, J.T. Penniston, J.N. Weiss, J.M. Tomich, K.D. Philipson, Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 266, 1014–1020 (1991)

    PubMed  CAS  Google Scholar 

  • Z. Li, S. Matsuoka, L.V. Hryshko, D.A. Nicoll, M.M. Bersohn, E.P. Burke, R.P. Lifton, K.D. Philipson, Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J. Biol. Chem. 269, 17434–17439 (1994)

    PubMed  CAS  Google Scholar 

  • G. Lin, Y. Liu, K.M. MacLeod, Regulation of muscle creatine kinase by phosphorylation in normal and diabetic hearts. Cell. Mol. Life Sci. 66, 135–144 (2009)

    Article  PubMed  CAS  Google Scholar 

  • P.S. Liu, L.S. Kao, Na+-dependent Ca2+ influx in bovine adrenal chromaffin cells. Cell Calcium 11, 573–579 (1990)

    Article  PubMed  CAS  Google Scholar 

  • S.O. Marx, J. Kurokawa, S. Reiken, H. Motoike, J. D’Armiento, A.R. Marks, R.S. Kass, Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295, 496–499 (2002)

    Article  PubMed  CAS  Google Scholar 

  • S. Matsuoka, D.A. Nicoll, Z. He, K.D. Philipson, Regulation of cardiac Na+-Ca2+ exchanger by the endogenous XIP region. J. Gen. Physiol. 109, 273–286 (1997)

    Article  PubMed  CAS  Google Scholar 

  • J.A. Mattiello, K.B. Margulies, V. Jeevanandam, S.R. Houser, Contribution of reverse-mode sodium-calcium exchange to contractions in failing human left ventricular myocytes. Cardiovasc. Res. 37, 424–431 (1998)

    Article  PubMed  CAS  Google Scholar 

  • E.D. Moore, E.F. Etter, K.D. Philipson, W.A. Carrington, K.E. Fogarty, L.M. Lifshitz, F.S. Fay, Coupling of the Na+/Ca2+ exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature 365, 657–660 (1993)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Nicoll, B.D. Quednau, Z. Qui, Y.R. Xia, A.J. Lusis, K.D. Philipson, Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J. Biol. Chem. 271, 24914–24921 (1996)

    Article  PubMed  CAS  Google Scholar 

  • M. Ottolia, D.A. Nicoll, K.D. Philipson, Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 284, 32735–32741 (2009)

    Article  PubMed  CAS  Google Scholar 

  • C.Y. Pan, L.S. Kao, Catecholamine secretion from bovine adrenal chromaffin cells: the role of the Na+/Ca2+ exchanger and the intracellular Ca2+ pool. J. Neurochem. 69, 1085–1092 (1997)

    Article  PubMed  CAS  Google Scholar 

  • C.Y. Pan, Y.S. Chu, L.S. Kao, Molecular study of the Na+/Ca2+ exchanger in bovine adrenal chromaffin cells. Biochem. J. 336(Pt 2), 305–310 (1998)

    PubMed  CAS  Google Scholar 

  • C.Y. Pan, L.L. Tsai, J.H. Jiang, L.W. Chen, L.S. Kao, The co-presence of Na+/Ca2+-K+ exchanger and Na+/Ca2+ exchanger in bovine adrenal chromaffin cells. J. Neurochem. 107, 658–667 (2008)

    Article  PubMed  CAS  Google Scholar 

  • M.V. Pulina, R. Rizzuto, M. Brini, E. Carafoli, Inhibitory interaction of the plasma membrane Na+/Ca2+ exchangers with the 14-3-3 proteins. J. Biol. Chem. 281, 19645–19654 (2006)

    Article  PubMed  CAS  Google Scholar 

  • B.D. Quednau, D.A. Nicoll, K.D. Philipson, Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. 272, C1250–C1261 (1997)

    PubMed  CAS  Google Scholar 

  • B.D. Quednau, D.A. Nicoll, K.D. Philipson, The sodium/calcium exchanger family-SLC8. Pflugers Arch. 447, 543–548 (2004)

    Article  PubMed  CAS  Google Scholar 

  • X. Ren, D.A. Nicoll, K.D. Philipson, Helix packing of the cardiac Na+-Ca2+ exchanger: proximity of transmembrane segments 1, 2, and 6. J. Biol. Chem. 281, 22808–22814 (2006)

    Article  PubMed  CAS  Google Scholar 

  • M. Reppel, B.K. Fleischmann, H. Reuter, P. Sasse, H. Schunkert, J. Hescheler, Regulation of the Na+/Ca2+ exchanger (NCX) in the murine embryonic heart. Cardiovasc. Res. 75, 99–108 (2007)

    Article  PubMed  CAS  Google Scholar 

  • U. Schlattner, M. Tokarska-Schlattner, T. Wallimann, Mitochondrial creatine kinase in human health and disease. Biochim. Biophys. Acta 1762, 164–180 (2006)

    Article  PubMed  CAS  Google Scholar 

  • D.H. Schulze, M. Muqhal, W.J. Lederer, A.M. Ruknudin, Sodium/calcium exchanger (NCX1) macromolecular complex. J. Biol. Chem. 278, 28849–28855 (2003)

    Article  PubMed  CAS  Google Scholar 

  • E.M. Schwarz, S. Benzer, Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 94, 10249–10254 (1997)

    Article  PubMed  CAS  Google Scholar 

  • M. Spindler, K. Meyer, H. Stromer, A. Leupold, E. Boehm, H. Wagner, S. Neubauer, Creatine kinase-deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis. Am. J. Physiol. Heart Circ. Physiol. 287, H1039–H1045 (2004)

    Article  PubMed  CAS  Google Scholar 

  • K. Steeghs, A. Benders, F. Oerlemans, A. de Haan, A. Heerschap, W. Ruitenbeek, C. Jost, J. van Deursen, B. Perryman, D. Pette, M. Bruckwilder, J. Koudijs, P. Jap, J. Veerkamp, B. Wieringa, Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89, 93–103 (1997)

    Article  PubMed  CAS  Google Scholar 

  • A. Tokumura, M. Okuno, K. Fukuzawa, H. Houchi, K. Tsuchiya, M. Oka, Positive and negative controls by protein kinases of sodium-dependent Ca2+ efflux from cultured bovine adrenal chromaffin cells stimulated by lysophosphatidic acid. Biochim. Biophys. Acta 1389, 67–75 (1998)

    Article  PubMed  CAS  Google Scholar 

  • K. Wakimoto, K. Kobayashi, O.M. Kuro, A. Yao, T. Iwamoto, N. Yanaka, S. Kita, A. Nishida, S. Azuma, Y. Toyoda, K. Omori, H. Imahie, T. Oka, S. Kudoh, O. Kohmoto, Y. Yazaki, M. Shigekawa, Y. Imai, Y. Nabeshima, I. Komuro, Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J. Biol. Chem. 275, 36991–36998 (2000)

    Article  PubMed  CAS  Google Scholar 

  • T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay, H.M. Eppenberger, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281(Pt 1), 21–40 (1992)

    PubMed  CAS  Google Scholar 

  • C.R. Weber, V. Piacentino 3rd, S.R. Houser, D.M. Bers, Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation 108, 2224–2229 (2003)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Wu, L.S. Kao, H.T. Liao, C.Y. Pan, Reverse mode Na+/Ca2+ exchangers trigger the release of Ca2+ from intracellular Ca2+ stores in cultured rat embryonic cortical neurons. Brain Res. 1201, 41–51 (2008)

    Article  PubMed  CAS  Google Scholar 

  • W. Xu, H. Denison, C.C. Hale, C. Gatto, M.A. Milanick, Identification of critical positive charges in XIP, the Na/Ca exchange inhibitory peptide. Arch. Biochem. Biophys. 341, 273–279 (1997)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was originally published in the Journal of Biological Chemistry; Yang, Y.-C., Fann, M.-J., Chang, W.-H., Tai, L.-H., Jiang, J.-H., and Kao, L.-S. (2010) Regulation of sodium-calcium exchanger activity by creatine kinase under energy-compromised conditions. J. Biol. Chem. Vol. 285, 28275–28285 © the American Society for Biochemistry and Molecular Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lung-Sen Kao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, YC., Kao, LS. (2013). Regulation of Sodium-Calcium Exchanger Activity by Creatine Kinase. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_14

Download citation

Publish with us

Policies and ethics