Skip to main content
Log in

The effects of a calcium dependent protease on the ultrastructure and contractile mechanics of skinned uterine smooth muscle

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

In situ substrates for a vascular smooth muscle calcium-dependent protease (CDP) were investigated using a chemically skinned uterine smooth muscle preparation. Treatment of skinned smooth muscles with CDP had no effect on the total content of actin and myosin. Electron microscopical observations demonstrated that membrane plaques, cytoplasmic dense bodies, and intermediate filaments were all degraded by CDP. In addition, CDP reduced both isometric force and isotonic shortening velocity of contracted muscles in a concentration and time-dependent manner. Treatment of contracting muscles with CDP resulted in a condensation of myofilaments away from the plasma membrane concurrent with the loss of contractility. The condensation of myofilaments was ATP-dependent and could be inhibited by removal of ATP prior to proteolysis. The effects of proteolysis on smooth muscle ultrastructure and contractility support previously proposed models which assign a role to cytoskeletal elements in coordinating the molecular interaction of actomyosin to produce muscle contraction. The loss of cytoskeletal structures following protease treatment suggests that one of the functions of CDP in smooth muscle may be the disassembly of the cell cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADELSTEIN, R. S. & EISENBERG, E. (1980) Regulation and kinetics of the actin-myosin-ATP interaction.A. Rev. Biochem. 49 921–56.

    Google Scholar 

  • ADNOT, S., POIRIER-DUPUIS, M., FRANKS, D. J. & HAMET, P. (1982) Stimulation of rat platelet adenylate cyclase by an endogenous calcium-dependent protease-like activity.J. Cyclic Nucleotide Res. 8 103–18.

    Google Scholar 

  • ARNER, A. (1983) Force-velocity relation in chemically-skinned rat portal vein.Pflügers Arch. 397 6–12.

    Google Scholar 

  • ASHTON, F. T., SOMLYO, A. V. & SOMLYO, A. P. (1975) The contractile apparatus of vascular smooth muscle. Intermediate high voltage stereo electron microscopy.J. molec. Biol 98 17–29.

    Google Scholar 

  • BAGBY, R. M. (1980) Double immunofluorescent staining of isolated smooth muscle cells.Histochemistry 69 113–30.

    Google Scholar 

  • BAGBY, R. M. (1983) Organization of contractile/cytoskeletal elements. InBiochemistry of Smooth Muscle, Vol. I, (edited by STEPHENS, N. L.) pp. 1–84. Boca Raton: Chemical Rubber Company.

    Google Scholar 

  • BOND, M. & SOMLYO, A. V. (1982) Dense bodies and actin polarity in vertebrate smooth muscle.J. Cell Biol. 95 403–13.

    Google Scholar 

  • CASSEL, D. & GLASER, L. (1982) Proteolytic cleavage of epidermal growth factor receptor.J. biol. Chem. 257 9845–8.

    Google Scholar 

  • CASSIDY, P., HOAR, P. E. & KERRICK, W. G. L. (1979) Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by [35S]ATPγS.J. biol. Chem. 254 11148–53.

    Google Scholar 

  • COOKE, P. H. & FAY, F. S. (1972) Correlation between fiber length, ultrastructure and the length-tension relationship of mammalian smooth muscle.J. Cell Biol. 52 105–16.

    Google Scholar 

  • DAVIES, P. J. A., WALLACH, D., WILLINGHAM, M. C., PASTAN, I., YAMAGUCHI, M. & ROBSON, R. M. (1978) Filamin-actin interaction. Dissociation of binding from gelation by Ca2+-activated proteolysis.J. biol. Chem. 253 4036–42.

    Google Scholar 

  • DAYTON, W. R., GOLL, D. E., STROMER, M. H., REVILLE, W. J., ZEECE, M. G. & ROBSON, R. M. (1975) Some properties of Ca2+-activated protease that may be involved in myofibrillar protein turnover. InCold Spring Harbor Conferences on Cell Proliferation (edited by REICH, E., RIFKIN, D. B. and SHAW, E.) Vol. 2, pp. 551–77. New York: Cold Springs Harbor Laboratory.

    Google Scholar 

  • DAYTON, W. R., REVILLE, W. J., GOLL, D. E. & STROMER, M. H. (1976) A Ca2+-activated protease possibly involved in myofibrillar protein turnover.Biochemistry 15 2159–67.

    Google Scholar 

  • DAYTON, W. R. & SCHOLLMEYER, J. V. (1980) Isolation from porcine cardiac muscle of a Ca2+-activated protease that partially degrades myofibrils.J. molec. cell. Cardiol. 12 533–51.

    Google Scholar 

  • EVANS, R. R., ROBSON, R. M. & STROMER, M. H. (1984) Properties of smooth muscle vinculin.J. biol. Chem. 259 3916–24.

    Google Scholar 

  • FABIATO, A. & FABIATO, F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells.J. Physiol. 75 463–505.

    Google Scholar 

  • FAY, F. S. & DELISE, C. M. (1973) Contraction of isolated smooth muscle cells — structural changes.Proc. natn. Acad. Sci. U.S.A. 70 641–5.

    Google Scholar 

  • GABELLA, G. (1973) Fine structure of smooth muscle.Phil. Trans. R. Soc. Ser. B 265 7–16.

    Google Scholar 

  • GUROFF, G. J. (1964) A neutral, calcium-activated proteinase from the soluble fraction of rat brain.J. biol. Chem. 239 149–55.

    Google Scholar 

  • HAEBERLE, J. R. (1981)Investigation of chemically-skinned rat myometrium during pregnancy. (Ph.D. thesis) Indianapolis, Indian, Indiana University School of Medicine (University Microfilms, Ann Arbor, Michigan).

    Google Scholar 

  • HAEBERLE, J. R., HOTT, J. W. & HATHAWAY, D. R. (1984) Pseudophosphorylation of the 20,000 Dalton myosin light chain: An artifact due to protein modification.Biochim. biophys. Acta 790 78–86.

    Google Scholar 

  • HATHAWAY, D. R. & HAEBERLE, J. R. (1985) Measurement of myosin light chain phosphorylation in smooth muscle by radioimmunoblot.Am. J. Physiol. In press.

  • HATHAWAY, D. R., WERTH, D. K. & HAEBERLE, J. R. (1982) Limited autolysis reduces the Ca2+ requirement of a smooth muscle Ca2+-activated protease.J. biol. Chem. 257 9072–7.

    Google Scholar 

  • HUSTON, R. B. & KREBS, E. G. (1968) Activation of skeletal muscle phosphorylase kinase by Ca2+. II. Identification of the kinase activating factor as a proteolytic enzyme.Biochemistry 7 2116–22.

    Google Scholar 

  • ISHIURA, S., SUGITA, H., NONAKA, I. & IMAHORI, K. (1980) Calcium-activated neutral protease. Its localization in the myofibril, especially at the Z-band.J. Biochem. 87 343–6.

    Google Scholar 

  • KISHIMOTO, A., KAJIKAWA, N., SHIOTA, M. & NISHIZUKA, Y. (1983) Proteolytic activation of calcium-activated phospholipid-dependent protein kinase by calcium-dependent neutral protease.J. biol. Chem. 258 1156–64.

    Google Scholar 

  • KLEE, C. B. (1977) Conformational transition accompanying the binding of Ca2+ to the protein activator of 3',5'-cyclic adenosine monophosphate phosphodiesterase.Biochemistry 16 1017–24.

    Google Scholar 

  • KLEIN, I., LEHOTAY, D. & GONDEK, M. (1981) Characterization of a calcium-activated protease that hydrolyzes a microtubule associated protein.Archs Biochem. Biophys. 208 520–7.

    Google Scholar 

  • LAMERS, J. M. J. & STINIS, J. T. (1980) Phosphorylation of low molecular weight proteins in purified preparations of rat heart sarcolemma and sarcoplasmic reticulum.Biochim. biophys. Acta 624, 443–59.

    Google Scholar 

  • LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. & RANDALL, R. J. (1951) Protein measurement with the folin phenol reagent.J. biol. Chem. 193, 265–75.

    Google Scholar 

  • LYNCH, G. & BAUDRY, M. (1984) The biochemistry of memory: A new and specific hypothesis.Science 224, 1057–63.

    Google Scholar 

  • MASAKI, T., ENDO, M. & EBASHI, S. (1967) Localization of 6S components of alpha-actinin at Z-band.J. Biochem. 62, 630–2.

    Google Scholar 

  • MELLGREN, R. L. (1980) Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium.FEBS Lett. 109, 129–33.

    Google Scholar 

  • MELLGREN, R. L., AYLWARD, J. H., KILLILEA, S. D. & LEE, E. Y. C. (1979) The activation and dissociation of a native high molecular weight form of rabbit skeletal muscle phosphorylase phosphatase by endogenous Ca2+-dependent proteases.J. biol. Chem. 254, 648–52.

    Google Scholar 

  • NELSON, W. J. & TRAUB, P. (1982) Purification and further characterization of the Ca2+-activated proteinase specific for the intermediate filament proteins vimentin and desmin.J. biol. Chem. 257, 5544–53.

    Google Scholar 

  • PANT, H. C. & GAINER, H. (1980) Properties of a calcium-activated protease in squid axoplasm which selectively degrades neurofilament proteins.J. Neurobiol. 11, 1–12.

    Google Scholar 

  • PEASE, D. C. & MOLINARI, S. (1960) Electron microscopy of muscular arteries; pial vessels of the cat and monkey.J. Ultrastruct. Res. 3, 447–8.

    Google Scholar 

  • PERISIC, O. & TRAUGH, J. A. (1983) Protease-activated kinase II as the potential mediator of insulin stimulated phosphorylation of ribosomal protein S6.J. biol. Chem. 258, 9589–92.

    Google Scholar 

  • PERRIE, W. T. & PERRY, S. V. (1970) An electrophoretic study of the low molecular weight components of myosin.Biochem. J. 119, 31–8.

    Google Scholar 

  • PETERSON, J. W. (1980) Vanadate ion inhibits actomyosin interaction in chemically-skinned vascular smooth muscle.Biochem. biophys. Res. Commun. 95, 1846–53.

    Google Scholar 

  • PHILLIPS, D. R. & JAKABOVA, M. (1977) Ca2+-dependent protease in human platelets. Specific cleavage of platelet polypeptides in the presence of added Ca2+.J. biol. Chem. 252, 5602–5.

    Google Scholar 

  • PONTREMOLI, S., MELLONI, E., SALAMINO, F., SPARATORE, B., MICHETTI, M. & HORECKER, B. L. (1984) Cytosolic Ca2+-dependent neutral proteinases from rabbit liver: Activation of the proenzymes by Ca2+ and substrate.Proc. natn. Acad. Sci. U.S.A. 81, 53–6.

    Google Scholar 

  • PORZIO, M. A. & PEARSON, A. M. (1977) Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Biochem. biophys. Acta 490, 27–34.

    Google Scholar 

  • PUCA, G. A., NOLA, E., SICA, V. & BRESCIANI, F. (1977) Estrogen binding proteins of calf uterus. Molecular and functional characterization of the receptor transforming factor: A CA2+-activated protease.J. biol. Chem. 252, 1358–66.

    Google Scholar 

  • REEDY, M. K., ETLINGER, J. D., RABINOWITZ, M., FISCHMAN, D. A. & ZAK, R. (1975) Removal of Z-lines and alpha-actinin from isolated myofibrils by a calcium-activated neutral proteaseJ. biol. Chem. 250, 4278–84.

    Google Scholar 

  • SAIDA, K. (1982) Intracellular Ca2+ release in skinned smooth muscle.J. gen. Physiol. 80, 191–202.

    Google Scholar 

  • SANDOVAL, I. V. & WEBER, K. (1978) Calcium-induced inactivation of microtubule formation in brain extracts.Eur. J. Biochem. 92, 463–470.

    Google Scholar 

  • SCHLAEPFER, W. W. & HASLER, M. B. (1979) Characterization of the calcium-induced disruption of neurofilaments in rat peripheral nerve.Brain Res. 168, 299–309.

    Google Scholar 

  • SMALL, J. V. & SOBIESZEK, A. (1977) Studies on the function and composition of the 10-nm (100-A) filaments of vertebrate smooth muscle.J. Cell Sci. 23, 243–68.

    Google Scholar 

  • SOMLYO, A. P., DEVINE, C. E., SOMLYO, A. V. & RICE, R. V. (1973) Filament organization in vertebrate smooth muscle.Phil. Trans R. Soc. Ser. B. 265, 223–9.

    Google Scholar 

  • SPARROW, M. P., MRWA, U., HOFMANN, F. & RUEGG, J. C. (1981) Calmodulin is essential for smooth muscle contraction.FEBS Lett. 125, 141–5.

    Google Scholar 

  • SUGITA, H., ISHIURA, S., SUZUKI, K. & IMAHORI, K. (1980) Ca-activated neutral protease and its inhibitors:in vitro effect on intact myofibrils.Muscle Nerve 3, 335–9.

    Google Scholar 

  • SUZUKI, A., NONAMI, Y. & GOLL, D. E. (1975) Proteins released from myofibrils by CASF (Ca2+-activated sarcoplasmic factor) and trypsin.Agric. biol. Chem. 39, 1461–7.

    Google Scholar 

  • TAHARA, S. M. & TRAUGH, J. A. (1982) Differential activation of two protease activated protein kinases from reticulocytes by a Ca2+-stimulated protease and identification of phosphorylated translational components.Eur. J. Biochem. 126, 395–9.

    Google Scholar 

  • TOYO-OKA, T., SHIMIZU, T. & MASAKI, T. (1978) Inhibition of proteolytic activity by leupeptin and antipain.Biochem. biophys. Res. Commun. 82, 484–91.

    Google Scholar 

  • TRUGLIA, J. A. & STRACHER, A. (1981) Purification and characterization of a calcium dependent sulfhydryl protease from human platelets.Biochem. biophys. Res. Commun. 100, 814–22.

    Google Scholar 

  • TSUKITA, S., TSUKITA, S. & ISHIKAWA, H. (1983) Association of actin and 10 nm filaments with the dense body in smooth muscle cells of the chicken gizzard.Cell Tiss. Res. 229, 233–42.

    Google Scholar 

  • WANG, K., ASH, J. F. & SINGER, S. J. (1975) Filamin, a new high-molecular weight protein found in smooth muscle and non-muscle cells.Proc. natn. Acad. Sci. U.S.A. 72, 4483–6.

    Google Scholar 

  • YEATON, R. W., LIPARI, M. T. & FOX, C. F. (1983) Calcium-mediated degradation of epidermal growth factor receptor in dislodged A431 cells and membrane preparations.J. biol. Chem. 258, 9254–61.

    Google Scholar 

  • YOSHIDA, N., WEKSLER, B. & NACHMAN, R. (1983) Purification of human platelet calcium-activated protease.J. biol. Chem. 258, 7168–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeberle, J.R., Coolican, S.A., Evan, A. et al. The effects of a calcium dependent protease on the ultrastructure and contractile mechanics of skinned uterine smooth muscle. J Muscle Res Cell Motil 6, 347–363 (1985). https://doi.org/10.1007/BF00713174

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713174

Keywords

Navigation