Skip to main content

Anaerobic Metabolism During Exercise

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

A constant supply of adenosine triphosphate (ATP) is essential for function in all cells and especially so in skeletal muscle cells to power the contractions needed to enable the many forms of movement required in our daily lives and for exercise and sporting events. The muscle stores of ATP are small, and metabolic pathways must maintain the required rates of ATP resynthesis when the demand for ATP is high. Oxidative (“aerobic”) phosphorylation uses reducing equivalents from the metabolism of carbohydrate and fat to produce ATP and is the default energy system in skeletal muscle. Substrate-level phosphorylation or “anaerobic metabolism” also plays a very important role in supplementing or buffering ATP production when aerobic ATP production cannot meet the needs of an activity. These situations include the transitions from rest to exercise and from one power output to a higher one, exercise that demands ATP provision rates above what can be provided aerobically, and in situations of suboptimal oxygen supply. Anaerobic energy is provided from phosphocreatine and muscle glycogen breakdown (anaerobic glycolysis). These systems can provide energy very quickly and at very high rates but are limited to short periods of time during high intensity exercise due to substrate depletion and increasing muscle acidosis. In most exercise and sporting situations, energy provision is maintained by contributions from both the aerobic and anaerobic sources to ensure that ATP resynthesis closely matches the exercise ATP demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade VL, Zagatto AM, Kalva CA et al (2021) Running-based anaerobic sprint test as a procedure to evaluate anaerobic power. Int J Sports Med 36:1156–1162

    Google Scholar 

  • Antonio J, Candow DG, Forbes SC et al (2021) Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 18:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Asmussen E. Muscle metabolism during exercise in man(1971) A historical survey. In: Muscle metabolism during exercise. Plenum Press, New York, pp 1–11

    Google Scholar 

  • Bangsbo J, Gollnick PB, Graham TE et al (1990) Anaerobic energy production and 02 deficit–debt relationship during exhaustive exercise in humans. J Physiol 422:539–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangsbo J, Johansen B, Quistorff B et al (1993) NMR and analytic biochemical evaluation of PCr nucleotides in the human calf during muscle contraction. J Appl Physiol 74:2034–2039

    Article  CAS  PubMed  Google Scholar 

  • Benson AP, Bowen TS, Ferguson C et al (2017) Data collection, handling, and fitting strategies to optimize accuracy and precision of oxygen uptake kinetics estimation from breath-by-breath measurements. J Appl Physiol 23:227–242

    Article  Google Scholar 

  • Bergstrom J, Hultman E (1967) A study of glycogen metabolism during exercise in man. Scand J Clin Lab Invest 19:218–228

    Article  CAS  PubMed  Google Scholar 

  • Bessman SP, Geiger PJ (1981) Transport of energy in muscle: the phosphorylcreatine shuttle. Science 211:448–452

    Article  CAS  PubMed  Google Scholar 

  • Bishop D, Edge J, Goodman C (2004) Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol 92:540–547

    Article  PubMed  Google Scholar 

  • Bogdanis GC, Nevill ME, Boobis LH et al (1995) Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol 482:467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanis GC, Nevill ME, Boobis LH et al (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 80:876–884

    Article  CAS  PubMed  Google Scholar 

  • Burt CT, Glonek T, Barany M (1976) Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorous nuclear magnetic resonance. J Biol Chem 251:2584–2591

    Article  CAS  PubMed  Google Scholar 

  • Cain DF, Davies RE (1962) Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun 8:361–367

    Article  CAS  PubMed  Google Scholar 

  • Campos EZ, Kalva-Filho CA, Gobbi RB et al (2017) Anaerobic contribution determined in swimming distances: relation with performance. Front Physiol 8:755

    Article  PubMed  PubMed Central  Google Scholar 

  • Casey A, Constantin-Teodosiu D, Howell S et al (1996) Metabolic responses of type I and II muscle fibres during repeated bouts of maximal exercise in humans. Am J Physiol Endocrinol Metab 271:E38–E43

    Article  CAS  Google Scholar 

  • Chasiotis D, Sahlin K, Hultman E (1982) Regulation of glycogenolysis in human muscle at rest and during exercise. J Appl Physiol 53:708–715

    Article  CAS  PubMed  Google Scholar 

  • Cheetham ME, Boobis LH, Brooks S et al (1986) Human muscle metabolism during sprint running. J Appl Physiol 61:54–60

    Article  CAS  PubMed  Google Scholar 

  • Chesley A, Heigenhauser GJF, Spriet LL (1996) Regulation of muscle glycogen phosphorylase activity following short-term endurance training. Am J Physiol Endocrinol Metab 270:E328–E335

    Article  CAS  Google Scholar 

  • Constantin-Teodosiu D, Greenhaff PL, McIntyre B et al (1997) Anaerobic energy production in human skeletal muscle in intense contraction: a comparison of 31P magnetic resonance spectroscopy and biochemical techniques. Exp Physiol 82:593–601

    Article  CAS  PubMed  Google Scholar 

  • Eggleton P, Eggleton MG (1927) The significance of phosphorous in muscular contractions. Nature 119:194–195

    Article  CAS  Google Scholar 

  • Engelhardt WA, Ljubimowa MN (1939) Myosin and adenosine triphosphate. Nature 144:668–669

    Article  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1927) The nature of the “inorganic phosphate” in voluntary muscle. Science 65:401–403

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1929) Phosphorous compounds of muscle and liver. Science 70:381–382

    Article  CAS  PubMed  Google Scholar 

  • Fletcher WM, Hopkins FG (1907) Lactic acid in amphibian muscles. J Physiol 35:247–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaitanos GC, Williams C, Boobis LH et al (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75:712–719

    Article  CAS  PubMed  Google Scholar 

  • Gollnick PD, Hermansen L (1973) Biochemical adaptation to exercise: anaerobic metabolism. In: Wilmore JH (ed) Exercise and sport sciences review. Academic Press, New York, pp 1–43

    Google Scholar 

  • Grassi B, Hogan MC, Gladden LB (2021) Microvascular O2 delivery and O2 utilization during metabolic transitions in skeletal muscle. One-hundred years after the pioneering work by August Krogh. Comp Biochem Physiol A Mol Integr Physiol 252:110842

    Article  CAS  PubMed  Google Scholar 

  • Green AL, Hultman E, Macdonald IA et al (1996) Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Phys 271:E821–E826

    CAS  Google Scholar 

  • Greenhaff PL, Nevill ME, Soderlund K et al (1994) The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol 478:149–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Grey TM, Spencer MD, Belfry GR et al (1985) Effects of age and long-term endurance training on VO2 kinetics. Med Sci Sports Exerc 47:289–298

    Article  Google Scholar 

  • Hargreaves M, McKenna MJ, Jenkins DG et al (1998) Muscle metabolites and performance during high intensity, intermittent exercise. J Appl Physiol 84:1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2:817–828

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Edwards RH, Hultman E et al (1976) The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch 367:137–142

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci 83:367–374

    Article  CAS  Google Scholar 

  • Hermansen L (1969) Anaerobic energy release. Med Sci Sports 1:32–38

    Google Scholar 

  • Hill AV, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Quart J Med 16:135–171

    Article  CAS  Google Scholar 

  • Hill AV, Long CNH, Lupton H (1924) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Proc Roy Soc Lond Ser B 96:438–475

    Article  CAS  Google Scholar 

  • Howlett RA, Parolin ML, Dyck DJ et al (1998) Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Physiol Regul Integr Comp Physiol 275:R418–R425

    Article  CAS  Google Scholar 

  • Hultman E, Bergstrsm J, McLennan-Anderson N (1967) Breakdown and resynthesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. Scand J Clin Lab Invest 19:56–66

    Article  CAS  PubMed  Google Scholar 

  • Hultman E, Sjoholm H (1983) Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J Physiol 345:525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultman E, Soderlund K, Timmons JA (1996) Muscle creatine loading in men. J Appl Physiol 81:232–237

    Article  CAS  PubMed  Google Scholar 

  • Jacobs I, Bar-Or O, Karlsson J et al (1982) Changes in muscle metabolites in females with 30-s exhaustive exercise. Med Sci Sports Exerc 14:457–460

    Article  CAS  PubMed  Google Scholar 

  • Jacobs I, Tesch P, Bar-Or O et al (1983) Lactate in human skeletal muscle after 10 and 30 s of supramaximal exercise. J Appl Physiol 55:365–367

    Article  CAS  PubMed  Google Scholar 

  • Jones NL, McCartney N, Graham T et al (1985) Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J Appl Physiol 59:132–136

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J, Saltin B (1970) Lactate, ATP and CP in working muscle during exhaustive exercise in men. J Appl Physiol 29:598–602

    Article  Google Scholar 

  • Kent-Braun JA, McCully KK, Chance B (1990) Metabolic effects of training in humans: a 31P-MRS study. J Appl Physiol 69:1165–1170

    Article  CAS  PubMed  Google Scholar 

  • Korzeniewski B, Rossiter HB (2021) Factors determining training-induced changes in V̇O2max, critical power, and V̇O2 on-kinetics in skeletal muscle. J Appl Physiol 130:498–507

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk JM, Heigenhauser GJ, Lindinger MI (1988) Factors influencing hydrogen ion concentration in muscle after intense exercise. J Appl Physiol 65:2080–2089

    Article  CAS  PubMed  Google Scholar 

  • Krustrup P, Mohr M, Steensburg A et al (2006) Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc 38:1165–1174

    Article  CAS  PubMed  Google Scholar 

  • MacDougall JD, Ward GR, Sale DG et al (1977) Biochemical adaptation of human skeletal muscle to heavy resistance training and immobilization. J Appl Physiol 43:700–703

    Article  CAS  PubMed  Google Scholar 

  • Margaria R, Cerretelli P, Mangili E (1964) Balance and kinetics of anaerobic energy release during strenuous exercise in man. J Appl Physiol 19:623–628

    Article  CAS  PubMed  Google Scholar 

  • Margaria R, Oliva D, DiPrampero PE et al (1969) Energy utilization in intermittent exercise of supramaximal intensity. J Appl Physiol 26:752–756

    Article  CAS  PubMed  Google Scholar 

  • McCartney N, Spriet LL, Heigenhauser GJF et al (1986) Muscle power and metabolism in maximal intermittent exercise. J Appl Physiol 60:1164–1169

    Article  CAS  PubMed  Google Scholar 

  • McCully KK (1993) 31P-MRS of quadriceps reveals quantitative differences between sprinters and long-distance runners. Med Sports Sci Exerc 25:1299–1300

    Google Scholar 

  • Medbø JI, Mohn A-C, Tabata I (1988) Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 64:50–60

    Article  PubMed  Google Scholar 

  • Medbø JI, Tabata I (1989) Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 67:1881–1886

    Article  PubMed  Google Scholar 

  • Medbø JI, Burgers S (1990) Effect of training on the anaerobic capacity. Med Sci Sports Exerc 22:501–507

    PubMed  Google Scholar 

  • Medbø JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 75:1654–1660

    Article  PubMed  Google Scholar 

  • Miller RG, Boska MD, Moussavi RS et al (1988) 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. J Clin Invest 81:1190–1196

    Google Scholar 

  • Murias JM, Kowalchuk JM, Paterson DH (2011) Speeding of VO2 kinetics in response to endurance-training in older and young women. Eur J Appl Physiol 111:235–243

    Article  PubMed  Google Scholar 

  • Negro M, Avanzato I, D’Antona G (2019) Creatine in skeletal muscle physiology. In: Nonvitamin and nonmineral nutritional supplements. Academic Press

    Google Scholar 

  • Nevill ME, Boobis LH, Brooks S et al (1989) Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 67:2376–2382

    Article  CAS  PubMed  Google Scholar 

  • Parolin ML, Chesley A, Matsos MP et al (1999) Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol Endocrinol Metab 277:E890–E900

    Article  CAS  Google Scholar 

  • Pearson MP, Spriet LL, Stevens ED (1990) Effects of sprint training on swim performance and white muscle metabolism during exercise and recovery in rainbow trout (Salmo gairdnerii Richardson). J Exp Biol 149:45–60

    Article  Google Scholar 

  • Perry CGR, Heigenhauser GJF, Bonen A et al (2008) High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab 33:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Ren JM, Hultman E (1989) Regulation of glycogenolysis in human skeletal muscle. J Appl Physiol 67:2243–2248

    Article  CAS  PubMed  Google Scholar 

  • Sacks J, Sacks WC (1933) The fundamental chemical changes in contracting mammalian muscle. Am J Phys 105:151–161

    Article  CAS  Google Scholar 

  • Sahlin K, Harris RC, Hultman E (1979) Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand J Clin Lab Invest 79:551–558

    Article  Google Scholar 

  • Sahlin K (2014) Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med 44(Suppl 2):S167–S173

    Article  PubMed  Google Scholar 

  • Saltin B (1990) Anaerobic capacity: past, present and prospective. In: Taylor AW, Gollnick PD, Green HJ et al (eds) Biochemistry of exercise VII. Human Kinetics, Champaign, pp 387–412

    Google Scholar 

  • Serresse O, Lortie G, Bouchard C (1988) Estimation of the contribution of the various energy systems during maximal work of short duration. Int J Sports Med 9:456–360

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Hill DW (1991) Contribution of energy systems during a Wingate power test. Br J Sports Med 25:196–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer MR, Gastin PB (2001) Energy contribution during 200-to1500 m running in highly trained athletes. Med Sci Sports Exerc 33:157–162

    Article  CAS  PubMed  Google Scholar 

  • Spriet LL (1992) Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharm 70:157–165

    Article  CAS  Google Scholar 

  • Spriet LL (2006) Anaerobic metabolism during exercise. In: Hargreaves M, Spriet LL (eds) Exercise metabolism, 2nd edn. Human Kinetics, Windsor, pp 7–28

    Google Scholar 

  • Spriet LL, Soderlund K, Bergstrom M et al (1987a) Anaerobic energy release in skeletal muscle during electrical stimulation in man. J Appl Physiol 62:611–615

    Article  CAS  PubMed  Google Scholar 

  • Spriet LL, Soderlund K, Bergstrom M et al (1987b) Skeletal muscle glycogenolysis, glycolysis and pH during electrical stimulation in man. J Appl Physiol 62:616–621

    Article  CAS  PubMed  Google Scholar 

  • Spriet LL, Lindinger MI, McKelvie RS et al (1989) Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 66:8–13

    Article  CAS  PubMed  Google Scholar 

  • Spriet LL, Howlett RA, Heigenhauser GJF (2000) An enzymatic approach to lactate production in human skeletal muscle during exercise. Med Sci Sports Exerc 32:756–763

    Article  CAS  PubMed  Google Scholar 

  • Steenge GR, Simpson EJ, Greenhaff PL (2000) Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol 89:1165–1171

    Article  CAS  PubMed  Google Scholar 

  • Talanian JL, Galloway SDR, Heigenhauser GJF et al (2007) Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation in women. J Appl Physiol 102:1439–1447

    Article  CAS  PubMed  Google Scholar 

  • Trump ME, Heigenhauser GJF, Putman CT (1996) Importance of phosphocreatine during intermittent maximal cycling. J Appl Physiol 80:1574–1580

    Article  CAS  PubMed  Google Scholar 

  • Vigh-Larsen JF, Ermidis G, Rago V et al (2020) Muscle metabolism and fatigue during simulated ice hockey match-play in elite players. Med Sci Sports Exerc 52:2162–2171

    Article  CAS  PubMed  Google Scholar 

  • Walter G, Vandenborne K, McCully KK (1997) Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. Am J Phys 272:C525–C534

    Article  CAS  Google Scholar 

  • Wilson JR, McCully KK, Mancini DM et al (1988) Relationship of muscular fatigue to pH and deprotonated pi in humans: a 31P-NMR study. J Appl Physiol 64:2333–2339

    Article  CAS  PubMed  Google Scholar 

  • Withers RT, Sherman WM, Clark DG et al (1991) Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer. Eur J Appl Physiol Occup Physiol 63:354–362

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence L. Spriet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spriet, L.L. (2022). Anaerobic Metabolism During Exercise. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_4

Download citation

Publish with us

Policies and ethics