Skip to main content
Log in

Extracellular and cerebrospinal fluids

  • Published:
Journal of Inherited Metabolic Disease

Summary

The mechanism of formation of extracellular fluid is first described, followed by an explanation of the relation between osmotic force, reflection coefficient and molecular size. The possible mechanism of brain extracellular fluid formation is then proposed in relation to the restriction offered by the blood-brain barrier.

The functions and compositions of cerebrospinal fluid (CSF) are then described followed by sections on the process of formation of CSF, the nonelectrolytes and proteins in CSF, the drainage mechanisms and protein synthesis by the choroid plexus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames A, Higashi K, Nesbett FB (1965) The relation of potassium concentration in choroid plexus fluid to that in plasma.J Physiol 181: 506–515.

    Google Scholar 

  • Bairamian D, Johanson CE, Parmalee JT, Epstein MH (1992) Potassium co-transport with sodium and chloride in the choroid plexus.J Neurochem 56: 1623–1629.

    Google Scholar 

  • Benveniste H (1989) Brain microdialysis.J Neurochem 52: 1667–1679.

    Google Scholar 

  • Betz AL, Firth JA, Goldstein GW (1980) Polarity of the blood-brain barrier: distribution of enzymes between the luminal and abluminal membranes of brain capillary endothelial cells.Brain Res 192: 17–28.

    Google Scholar 

  • Bradbury MWB (1979)The Concept of a Blood-Brain Barrier. Chichester: Wiley.

    Google Scholar 

  • Bradbury MWB, Brøndsted HE (1973) Na+ dependent transport of sugars and iodide from cerebral ventricles of the rabbit.J Physiol 234: 27–143.

    Google Scholar 

  • Bradbury MWB, Davson H (1965) The transport of potassium between blood, cerebrospinal fluid and brain.J Physiol 181: 151–174.

    Google Scholar 

  • Bradbury MWB, Westrop RJ (1983) Factors influencing exit of substances from the cerebrospinal fluid into deep cervical lymph of the rabbit.J Physiol 339: 519–534.

    Google Scholar 

  • Chanoine JP, Alex A, Fang SL et al (1992) Role of transthyretin in the transport of thyroxine from blood to the choroid plexus, the cerebrospinal fluid and the brain.Endocrinology 130: 933–938.

    Google Scholar 

  • Chodobski A, Szmydynger-Chodobska J, Cooper E, McKinley MJ (1992) Atrial natriuretic peptide does not alter cerebrospinal fluid formation in the sheep.Am J Physiol 31: 12860–12864.

    Google Scholar 

  • Christensen O, Simon M, Randlev T (1989) Anion channels in a leaky epithelium: a patch clamp study of choroid plexus.Pflug Arch 415: 37–46.

    Google Scholar 

  • Cole JA, Poulain DA (1990) Local increases in extracellular [K+] in the supra-optic nucleus during the milk ejection reflex in the anaesthetized rat.J Physiol 420: 420 72P.

    Google Scholar 

  • Cserr H, Patlak CS (1991) Regulation of brain volume under isometric and anisosmotic conditions. In Gilles R, ed.Advances in Comparative and Environmental Physiology 9. Berlin: Springer-Verlag, 61–80.

    Google Scholar 

  • Cserr HF, De Pasquale M, Nicholson C, Patlak CS, Pettigrew KD, Rice ME (1991) Extracellular volume decreases which cell volume is maintained by ion uptake in rat brain during acute hypernatremia.J Physiol 442: 277–295.

    Google Scholar 

  • Davson H, Segal MB (1970) The effects of some inhibitors and accelerators of sodium transport on the turnover of22Na in the cerebrospinal fluid and the brain.J Physiol 209: 131–153.

    Google Scholar 

  • Davson H, Spaziani E (1959) The blood-brain barrier.J Physiol 149: 135–143.

    Google Scholar 

  • Davson H, Welch K, Segal MB (1987)The Physiology and Pathophysiology of the Cerebrospinal Fluid. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Deane R, Segal MB (1978) Effect of vascular perfusion on the transport of sugars across the choroid plexus of the sheep.J Physiol 285: 57P.

  • Deane R, Segal MB (1985) The transport of sugars across the perfused choroid plexus of the sheep.J Physiol 362: 245–260.

    Google Scholar 

  • De Pasquale M, Patlak CS, Cserr HF (1989) Brain ion and volume regulation during acute hypernatremia in Battlebro rats.Am J Physiol 256: F1059-F1066.

    Google Scholar 

  • Diamond JH, Bossert WH (1967) Standing gradient-osmotic flow: A mechanism for coupling of water and solute transport in epithelia.J Gen Physiol 50: 2061–2083.

    Google Scholar 

  • Dickson PW, Aldred AR, Menting JGT, Marley PD, Sawyer WH, Schreiber G (1987) Thyroxine transport in choroid plexus.J Biol Chem 262: 13907–13915.

    Google Scholar 

  • Dratman MB, Crutchfield FL, Schoenhoff MB (1991) Transport of iodothyronine from bloodstream to brain: Contributions by blood-brain and choroid plexus: cerebrospinal fluid barrier.Brain Res 554: 229–236.

    Google Scholar 

  • Ernst SA, Palacios JR, Siegel GJ (1986) Immunocytochemical localisation of Na+, K+ ATPase catalytic polypeptide in mouse choroid plexus.J Histochem Cytochem 34: 189–195.

    Google Scholar 

  • Felgenhauer K (1974) Protein size and cerebrospinal fluid.Klin Wochenschr 52: 1158–1164.

    Google Scholar 

  • Garner C, Brown PD (1992) Two types of chloride channel in the apical membrane of the rat choroid plexus epithelial cells.Brain Res 591: 137–145.

    Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat.Brain Res 120: 231–249.

    Google Scholar 

  • Hill AE (1975) Solute-solvent coupling in epithelia: A critical examination of the standing gradient osmotic flow theory.Proc Roy Soc B 190: 99–114.

    Google Scholar 

  • Huxtable RJ (1992) The physiological actions of taurine.Physiol Rev 72: 105–163.

    Google Scholar 

  • Johanson CE, Murphy VA (1990) Acetazolemide and insulin alter choroid plexus epithelial cell [Na+] pH and volume.Am J Physiol 258: F1538-F1546.

    Google Scholar 

  • Johanson CE, Sweeney SM, Parmalee JT, Epstein MH (1990) Co-transport of sodium and chloride by the adult mammalian choroid plexus.Am J Physiol 258: C211-C216.

    Google Scholar 

  • Knuckey NW, Fowler AG, Johanson CE, Nashold JRB, Epstein MH (1991) Cisterna magna microdialysis of22Na to evaluate ion transport and cerebrospinal fluid dynamics.J Neurosurg 74: 905–971.

    Google Scholar 

  • Levick JR (1991)An Introduction to Cardiovascular Physiology. London: Butterworths, 117–170.

    Google Scholar 

  • Lindvall-Axelsson M, Nilsson C, Owman C, Winbladh B (1992) Inhibition of cerebrospinal fluid formation by omeprazole.Exp Neurol 115: 394–399.

    Google Scholar 

  • Lohr JW, McReynolds J, Grimaldi T, Acara M (1988) Effect of acute and chronic hypernatremia in myoinositol and sorbitol concentrations in the rat brain and kidney.Life Sci 43: 271–276.

    Google Scholar 

  • Lorenzo AV (1977) Factors governing the composition of the cerebrospinal fluid.Exp Eye Res 25: 205–228.

    Google Scholar 

  • Maren TH, Broder LE (1976) The role of carbonic anhydrase in anion secretion into cerebrospinal fluid.J Pharmacol Exp Ther 172: 197–202.

    Google Scholar 

  • Michel CC (1985) The Malpighi Lecture. Vascular permeability — the consequence of Malpighi's hypothesis.Int J Microcirc Clin Exp 4: 265–284.

    Google Scholar 

  • Netter FH (1953)The Ciba Collection of Medical Illustrations, Vol 1. The Nervous System. Summit, New Jersey: Ciba Pharmaceutical Products Inc., 44.

    Google Scholar 

  • Nilsson C, Lindvall-Axelsson M, Owman C (1992) Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system.Brain Res Rev 17: 109–138.

    Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) Some unique ultrastructural characteristics of rat brain capillaries.Am Neurol 1: 409–417.

    Google Scholar 

  • Pappenheimer JR, Heisey SR, Jordan EF, Downer J de C (1962) Perfusion of the cerebralventricular system in unanaesthetised goats.Am J Physiol 203: 763–774.

    Google Scholar 

  • Pollay M, Stevens A, Estrada A, Kaplan R (1972) Extracorporeal perfusion of choroid plexus.J Appl Physiol 32: 612–617.

    Google Scholar 

  • Preston JE (1989) PhD thesis, University of London.

  • Preston JE, Segal MB (1990) The steady state amino acid fluxes across the perfused choroid plexus of the sheep.Brain Res 525: 275–279.

    Google Scholar 

  • Preston JE, Segal MB (1992a) The uptake of anionic and cationic amino acids by the isolated sheep choroid plexus.Brain Res 581: 351–355.

    Google Scholar 

  • Preston JE, Segal MB (1992b) Saturable uptake of [125I]l-tri-iodothyronine at the basolateral (blood) and apical (cerebrospinal fluid) sides of the isolated perfused sheep choroid plexus.Brain Res 592: 84–90.

    Google Scholar 

  • Preston JE, Segal MB (1992c) Thyroid hormone uptake at the blood face of the isolated perfused sheep choroid plexus.J Physiol 446: 87P.

  • Preston JE, Segal MB, Walley GJ, Zlokovic BV (1989) Neutral amino acid uptake by the isolated perfused sheep choroid plexus.J Physiol 408: 31–43.

    Google Scholar 

  • Quinton PM, Wright EM, Tarmay JMcD (1973) Localization of the sodium pump in the choroid plexus epithelium.J Cell Biol 58: 724–730.

    Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localisation of a blood-brain barrier to exogenous peroxidase.J Cell Biol 34: 207–217.

    Google Scholar 

  • Rodriguez LA (1955) Experiments on the histologic locus of the haemato-encephalic barrier.J Comp Neurol 102: 27–46.

    Google Scholar 

  • Saito Y, Wright EM (1983) Bicarbonate transport across frog choroid plexus and its control by cyclic nucleotides.J Physiol 336: 635–648.

    Google Scholar 

  • Schreiber G, Aldred AR, Jarowski A, Nilsson C, Achen MG, Segal MB (1990) Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus.Am J Physiol 258: R338-R345.

    Google Scholar 

  • Segal MB, Burgess AM (1974) A combined physiological and morphological study of the secretory process by the rabbit choroid plexus.J Cell Sci 14: 339–350.

    Google Scholar 

  • Segal MB, Pollay M (1977) The secretion of cerebrospinal fluid.Exp Eye Res 25: 127–148.

    Google Scholar 

  • Ungerstedt U (1984) Measurement of neurotransmitter release by intracranial microdialysis. In Marsden CA, ed.Measurements of Neurotransmitter Release In Vivo. New York: Wiley, 81–107.

    Google Scholar 

  • Van Deurs B, Koehler JK (1979) Tight junctions in the choroid plexus epithelium.J Cell Biol 80: 662–673.

    Google Scholar 

  • Wright EM (1972) Accumulation and transport of amino acids by the frog choroid plexus.Brain Res 44: 207–219.

    Google Scholar 

  • Wyckoff RWG, Young JZ (1956) The motor-neurone surface.Proc Roy Soc B 144: 440–450.

    Google Scholar 

  • Yudilevich DL, Mann GE (1985)Carrier-mediated Transport of Solutes from Blood to Tissue. London: Longman.

    Google Scholar 

  • Zlokovic BV, Segal MB, McComb JG, Hyman S, Weiss MH, Davson H (1991) Kinetics of ciculatory vasopressin uptake by choroid plexus.Am J Physiol 260: F216-F224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, M.B. Extracellular and cerebrospinal fluids. J Inherit Metab Dis 16, 617–638 (1993). https://doi.org/10.1007/BF00711896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711896

Keywords

Navigation