Skip to main content

Anatomy and Physiology of the Cerebrospinal Fluid

  • Chapter
  • First Online:
Ocular Fluid Dynamics

Abstract

The cerebrospinal fluid (CSF) is the primary circulating fluid of the central nervous system. It serves numerous important physiologic and maintenance functions, and its production and movement are highly regulated. Herein, we describe the key anatomic structures of importance in regard to CSF production, circulation, and absorption, followed by the regulatory mechanisms responsible for its proper functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felten D, Jozefowicz R. Netter’s Atlas of Human Neuroscience. 2003. 1st ed. Elsevier Health Sciences.

    Google Scholar 

  2. Kiernan J. Barrs The Human Nervous System: An Anatomical Viewpoint. 2005. 8th Ed. Lippincott Williams & Wilkins.

    Google Scholar 

  3. Purves D, Augustine G, Fitzpatrick D, Katz L, LaMantia A-S, McNamara J, Williams S. Neuroscience. 2001. 2nd ed. Sinauer Associates, Inc. Sunderland, Massachusetts.

    Google Scholar 

  4. Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The choroid plexus cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 2005 71: 1–52

    Google Scholar 

  5. Last R, Tompsett D. Casts of the cerebral ventricles. Brit J Surg 1953. 40:525-543

    Article  Google Scholar 

  6. Matys T, Horsburgh A, Kirollos R, Massoud T. The Aqueduct of Sylvius: Applied 3-T magnetic resonance imaging anatomy and morphometry with neuroendoscopic relevance. Neurosurgery 2013: 73(ONS Suppl 2):ons132-ons140

    Article  Google Scholar 

  7. Woodlam DH, Millen JW. Anatomical considerations in the pathology of stenosis of the cerebral aqueduct. Brain 1953:76(1):104-12.

    Article  Google Scholar 

  8. Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston M. Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol. 2002. 282(6):R1593-9.

    Article  Google Scholar 

  9. Rammling M, Madan M, Paul L, Behnam B, Pattisapu JV. Evidence for reduced lymphatic CSF absorption in the H-Tx rat hydrocephalus model. Cerebrospinal Fluid Res. 2008 Oct 16;5:15

    Article  Google Scholar 

  10. Brierly JB, Field EJ. The connexions of the spinal subarachnoid space with the lymphatic system. Jl Anat. 1948. 82: 153-66.

    Google Scholar 

  11. Bozanovic-Sosic R, Mollanji R, Johnston MG. Spinal and cranial contributions to total cerebrospinal fluid transport. J Physiol Regul Integr Comp Physiol 2001 281(3): R909-16.

    Article  Google Scholar 

  12. Leach J, Jones B, Tomsick T, Stewart C, Balko M. Normal appearance of arachnoid granulations on contrast-enhanced CT and MR of the brain: differentiation from dural sinus disease. AJNR Am J Neuroradiol 1996. 17: 1523-32.

    Google Scholar 

  13. LeGros Clark W. On the pacchionian bodies. J Anat. 1920. 55:40-8.

    Google Scholar 

  14. Davson H, Segal M. Physiology of the CSF and Blood-Brain Barriers. 1995. 1st Ed. CRC Press.

    Google Scholar 

  15. Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 2010 21(7):9

    Google Scholar 

  16. Bloomfield I, Johnston I, Bilston L. Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr Neurosurg 1998 May;28(5):246-51

    Article  Google Scholar 

  17. Burris CA, Ashwood ER, Burns DE. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 4th ed. 2006. St Louis: Elsevier Saunders. 1633:962-967

    Google Scholar 

  18. Kaplan Pesce. Clinical Chemistry: Theory, Analysis, Correlation. 5th ed. 2010. St. Louis, MO: Elsevier, Inc; 904-928.

    Google Scholar 

  19. Lui A, Polis T, Cicutti N. Densities of cerebrospinal fluid and spinal anaesthetic solution in surgical patients at body temperature. Can J Anaesth. 1998 45(4):297-303

    Article  Google Scholar 

  20. Spector R, Snodgrass S, Johanson C. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp Neurol. 2015. 273:57-68.

    Article  Google Scholar 

  21. Brown P, Davies S, Speake T, Millar I. Molecular mechanisms of cerebrospinal fluid production. Neuroscience 2004 129: 957-70.

    Article  Google Scholar 

  22. May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990. 40(3 Pt 1):500-3.

    Article  Google Scholar 

  23. Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolayngol Head Neck Dis. 2011 128(6):309-16.

    Article  Google Scholar 

  24. Spector R, Snodgrass S, Johanson C. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp Neurol. 2015. 273:57-68.

    Article  Google Scholar 

  25. Fleischman D, Berdahl J, Zaydlarova J, Stinnett S, Fautsch M, Allingham R. Cerebrospinal fluid pressure decreases with older age. PLoS One. 2012 7(12):e52664.

    Article  Google Scholar 

  26. Samuels B, Hammes N, Johnson P, Shekhar A, McKinnon S, Allingham R. Dorsomedial/perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci. 2012 53(11):7328-35.

    Article  Google Scholar 

  27. Spector R, Keep R, Snodgrass S, Smith Q, Johanson C. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol. 2015. 267:78-86.

    Article  Google Scholar 

  28. Alperin N, Lee S, Sivaramakrishnan A, Hushek S. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. Journal of Magnetic Resonance Imaging. 2005. 22:591-6.

    Article  Google Scholar 

  29. Cserr HF, Harling-Berg CJ, Knopf PM: Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 1992 4:269-76.

    Article  Google Scholar 

  30. Jessen N, Munk A, Lundgaard, Nedergaard M. The glymphatic system – a beginner’s guide. Neurochem Res. 2015 40(12): 2583-99.

    Article  Google Scholar 

  31. Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, Logan J, Nedergaard M, Benveniste H. The effect of body posture on brain glymphatic transport. J of Neuroscience 2015: 35(31):11034-44.

    Article  Google Scholar 

  32. Thiery J, Lomet D, Bougoin S, Malpoux B. Turnover rate of cerebrospinal fluid in female sheep: changes related to different light-dark cycles. Cerebrospinal Fluid Research 2009 6:9

    Google Scholar 

  33. Elman R. Spinal arachnoid granulations with especial reference to the cerebrospinal fluid. Bull Johns Hopkins Hosp. 1923. 34:99.

    Google Scholar 

  34. Albeck MJ, Skak C, Nielsen PR, Olsen KS, Borgesen SE, Gjerris F. Age dependency of resistance to cerebrospinal fluid outflow. J Neurosurg 1998. 89: 275–8.

    Article  Google Scholar 

  35. Berdahl J, Fleischman D, Zaydlarova J, Stinnett S, Allingham R, Fautsch M. Body mass index has a linear relationship with cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2012 53(3):1422-7.

    Article  Google Scholar 

  36. Lenfeldt N, Koskinen LOD, Bergenheim AT, Malm, J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology. 2007. 68:155–158

    Article  Google Scholar 

  37. Nagra G, Johnston MG. Impact of ageing on lymphatic cerebrospinal fluid absorption in the rat. Neuropathology and Applied Neurobiology 2007 33: 684–691

    Article  Google Scholar 

  38. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995 May; 36(6): 1163-72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fleischman, D., Berdahl, J. (2019). Anatomy and Physiology of the Cerebrospinal Fluid. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_18

Download citation

Publish with us

Policies and ethics