Skip to main content
Log in

Cyclic nucleotide metabolism in the sympathetic ganglion

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The synaptic processes controlling cyclic nucleotide metabolism in the rat superior cervical ganglion were examined through electrical stimulation of preganglionic and postganglionic nerves.

  2. 2.

    Both cyclic AMP and cyclic GMP were measured in each ganglion. Cyclic AMP was increased twofold by preganglionic but not postganglionic stimulation for 30 sec.

  3. 3.

    Carbachol also increased cyclic AMP twofold. These elevations were calcium dependent and atropine sensitive, consistent with a reliance on muscarinic transmission. However, atropine did not inhibit the elevation of cyclic AMP following preganglionic stimulation for 60 sec.

  4. 4.

    A much larger increase in cyclic AMP could be induced by stimulation ofβ-adrenergic receptors, but this mechanism did not appear to be invoked by nervous activity.

  5. 5.

    Cyclic GMP levels were increased sixfold by preganglionic stimulation, twofold by postganglionic stimulation, and twofold by carbachol. All of these effects on cyclic GMP levels were calcium sensitive.

  6. 6.

    Atropine didnot inhibit the effect of 30-sec preganglionic stimulation on cyclic GMP. However, atropine blocked the cyclic GMP increases induced by carbachol or by postganglionic stimulation and partially inhibited the increase following 60-sec preganglionic stimulation.

    Thus, synaptic activity alters the levels of both cyclic AMP and cyclic GMP in the rat ganglion, but more than one process is involved and these processes appear to be considerably different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleman, V., Bayon, A., and Molina, J. (1974). Functional changes of synapses.J. Adv. Behav. Biol. 10115–124.

    Google Scholar 

  • Ariano, M. A., Briggs, C. A., and McAfee, D. A. (1982). Cellular localization of cyclic nucleotide changes in rat superior cervical ganglion.Cell. Mol. Neurobiol. 2143–156.

    Google Scholar 

  • Ashe, J. W., and Libet, B. (1981). Modulation of slow postsynaptic potentials by dopamine, in rabbit sympathetic ganglion.Brain Res. 21793–106.

    Google Scholar 

  • Berridge, M. J. (1979). Modulation of nervous activity by cyclic nucleotides and calcium. InThe Neurosciences: Fourth Study Program (Schmitt, F. O., and Worden, F. G., Eds.), MIT Press, Cambridge, Mass., pp. 873–889.

    Google Scholar 

  • Bloom, F. E. (1979). Cyclic nucleotides in central synaptic transmission.Fed. Proc. 382203–2207.

    Google Scholar 

  • Briggs, C. A., and McAfee, D. A. (1982). Proving a role for cyclic AMP in synaptic transmission.Trends Pharmacol. Sci. 3241–244.

    Google Scholar 

  • Brown, D. A. (1966). Effects of hexamethonium and hyoscine on the drug-induced depolarization of isolated superior cervical ganglion.Br. J. Pharmacol. 26521–537.

    Google Scholar 

  • Brown, D. A., Caufield, M. P., and Kirby, P. J. (1979). Relation between catecholamine-induced cyclic AMP changes and hyperpolarization in isolated rat sympathetic ganglia.J. Physiol. (London) 290441–451.

    Google Scholar 

  • Cailla, H. L., Racine-Weiskuch, M. S., and Delaage, M. A. (1973). Adenosine 3′,5′ cyclic monophosphate assay at 10−15 mole level.Anal. Biochem. 56394–407.

    Google Scholar 

  • Chatzkel, S., Zimmerman, I., and Berg, A. (1974). Modulation of cyclic-AMP synthesis in the cat superior cervical ganglion by short term presynaptic stimulation.Brain Res. 80523–526.

    Google Scholar 

  • Cheung, W. Y. (1980). Calmodulin plays a pivotal role in cellular regulation.Science 20719–27.

    Google Scholar 

  • Deutsch, H., Ulmar, G., and Cramer, H. (1977). Alterations in the levels of cAMP and cGMP after decentralization of the rat superior cervical ganglion.Experientia 331164–1165.

    Google Scholar 

  • Dun, N. J. (1980). Ganglionic transmission: Electrophysiology and pharmacology.Fed. Proc. 392982–2989.

    Google Scholar 

  • Frey, E. A., and McIsaac, R. J. (1981). A comparison of cyclic guanosine 3′:5′-monophosphate and muscarinic excitatory responses in the superior cervical ganglion of the rat.J. Pharmacol Exp. Ther. 218115–121.

    Google Scholar 

  • Gallagher, J. P., Shinnick-Gallagher, P., Cole, A. E., Griffith, W. H. III, and Williams, B. J. (1980). Current hypotheses for the slow inhibitory postsynaptic potential in sympathetic ganglia.Fed. Proc. 393009–3015.

    Google Scholar 

  • Greengard, P. (1981). Intracellular signals in the brain. InThe Harvey Lecture Series 75, Academic Press, New York, pp. 277–331.

    Google Scholar 

  • Harper, J. F., and Brooker, G. (1975). Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2′O acetylation by acetic anhydride in aqueous solution.J. Cyc. Nucl. Res. 1207–218.

    Google Scholar 

  • Kalix, P. (1976). Effect of decentralization and glucose withdrawal on the potassium-induced cAMP increase in the rabbit superior cervical ganglion.Eur. J. Pharmacol. 39313–321.

    Google Scholar 

  • Kalix, P., and Roch, P. (1976). Evidence of depolarization-induced cAMP increase in the superior cervical ganglion of several mammalian species.Gen. Pharmacol. 7267–270.

    Google Scholar 

  • Kalix, P., McAfee, D. A., Schoderet, M., and Greengard, P. (1974). Pharmacological analysis of synaptically mediated increase in cyclic adenosine monophosphate in rabbit superior cervical ganglion.J. Pharmacol. Exp. Ther. 188676–687.

    Google Scholar 

  • Kebabian, J. W. (1977). Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system.Adv. Cycl. Nucl. Res. 8421–508.

    Google Scholar 

  • Kebabian, J. W., Steiner, A. L., and Greengard, P. (1975). Muscarinic cholinergic regulation of cyclic guanosine 3′,5′-monophosphate in autonomic ganglia: possible role in synaptic transmission.J. Pharmacol. Exp. Ther. 193474–488.

    Google Scholar 

  • Klein, M., Shapiro, E., and Kandel, E. R. (1980). Synaptic plasticity and the modulation of the Ca2+ current.J. Exp. Biol. 89117–157.

    Google Scholar 

  • Levitan, I. B., and Adams, W. B. (1981). Cyclic AMP modulation of a specific ion channel in an identified nerve cell: Possible role for protein phosphorylationAdv. Cycl. Nucl. Res. 14647–653.

    Google Scholar 

  • Libet, B. (1979). Which postsynaptic action of dopamine is mediated by cyclic AMP?Life Sci. 241043–1058.

    Google Scholar 

  • Lindl, T., and Cramer, H. (1975). Evidence against dopamine as the mediator of the rise of cyclic AMP in the superior cervical ganglion of the rat.Biochem. Biophys. Res. Comm. 65731–739.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol Chem. 193265–275.

    Google Scholar 

  • McAfee, D. A. (1982). The superior cervical sympathetic ganglion: Physiological considerations. InProgress in Cholinergic Biology: Model Cholinergic Synapses (Hanin, I., and Goldberg, A. M., Eds.), Raven Press, New York pp. 191–211.

    Google Scholar 

  • McAfee, D. A., Schorderet, M., and Greengard, P. (1971). Adenosine 3′,5′-monophosphate in nervous tissue: Increase associated with synaptic transmission.Science 1711156–1158.

    Google Scholar 

  • McAfee, D. A., Henon, B. K., Whiting, G. J., Horn, J. P., Yarowsky, P. J., and Turner, D. K. (1980). The action of cAMP and catecholamines in mammalian sympathetic ganglia.Fed. Proc. 392997–3002.

    Google Scholar 

  • Mochida, S., Kobayashi, H., Tosaka, T., Ito, J., and Libet, B. (1981). Specific dopamine receptor mediates the production of cyclic AMP in rabbit sympathetic ganglia and thereby modulates the muscarine postsynaptic response.Adv. Cycl. Nucl. Res. 14685.

    Google Scholar 

  • Nestler, E. J., and Greengard, P. (1980). Dopamine and hyperpolarizing agents regulate the state of phosphorylation of protein I in the mammalian superior cervical sympathetic ganglion.Proc. Natl. Acad. Sci. USA 777479–7483.

    Google Scholar 

  • Nestler, E. J., and Greengard, P. (1981). Impulse conduction increases the state of phosphorylation of protein I, a neuron-specific protein, in the rabbit superior cervical ganglion.Soc. Neurosci. Abstr. 7707.

    Google Scholar 

  • Quenzer, L. F., Patterson, B. A., and Volle, R. L. (1980). The cyclic nucleotide content of the rat superior cervical ganglion.J. Pharmacol. Exp. Ther. 215297–303.

    Google Scholar 

  • Robison, G. A., Butcher, R. W., and Sutherland, E. W. (1971).Cyclic AMP, Academic Press, New York.

    Google Scholar 

  • Roth, R. H., Walters, J. R., Murrin, L. C., and Morgenroth, V. H. III (1975). Dopaminergic neurons: Role of impulse flow and pre-synaptic receptors in the regulation of tyrosine hydroxylase. InPre- and Post-synaptic Receptors, Marcel Dekker, New York, p 5.

    Google Scholar 

  • Sacchi, O., and Perri, V. (1971). Quantal release of acetylcholine from the nerve endings of the guinea-pig superior cervical ganglion.Pflugers Arch. 329207–219.

    Google Scholar 

  • Schultz, G., Hardman, J. G., Schultz, K., Baird, C. E., and Sutherland, E. W. (1973). The importance of calcium ions for the regulation of guanosine 3′:5′-cyclic monophosphate levels.Proc. Natl. Acad. Sci. USA 703889–3893.

    Google Scholar 

  • Skok, V. (1973).Physiology of Autonomic Ganglia, Igaku Shoin, Tokyo.

    Google Scholar 

  • Strumwasser, F., Kaczmarek, L. K., Jennings, K. R., and Chiu, A. Y. (1981). Studies of a model peptidergic neuronal system, the bag cell ofAplysia. inNeurosecretion, Molecules, Cells and Systems (Lederis, K., and Farner, D. S., Eds.), Plenum Press, New York pp. 251–270.

    Google Scholar 

  • Volle, R. L., and Patterson, B. A. (1982). Noncholinergic nonadrenergic increase of adenosine 3′5′-monophosphate (cAMP) levels in rat superior cervical ganglia during preganglionic stimulation.Fed. Proc. Abstr. 411000.

    Google Scholar 

  • Volle, R. L., Quenzer, L. F., Patterson, B. A., Alkadhi, K. A., and Henderson, E. G. (1981). Cyclic guanosine 3′,5′-monophosphate accumulation and45Ca-uptake by rat superior cervical ganglia during preganglionic stimulation.J. Pharmacol. Exp. Ther. 219338–343.

    Google Scholar 

  • Wamsley, J. K., West, J. R., Black, A. C., Jr., and Williams, T. H. (1979). Muscarinic cholinergic and preganglionic physiological stimulation increase cyclic GMP levels in guinea pig superior cervical ganglia.J. Neurochem. 321033–1035.

    Google Scholar 

  • Weight, F. F., Petzold, G., and Greengard, P. (1974). Guanosine 3′,5′-monophosphate in sympathetic ganglia: Increase associated with synaptic transmission.Science 186942–944.

    Google Scholar 

  • Weight, F. F., Schulman, J. A., Smith, P. A., and Busis, N. A. (1979). Long-lasting synaptic potentials and the modulation of synaptic transmission.Fed. Proc. 382084–2094.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggs, C.A., Whiting, G.J., Ariano, M.A. et al. Cyclic nucleotide metabolism in the sympathetic ganglion. Cell Mol Neurobiol 2, 129–141 (1982). https://doi.org/10.1007/BF00711078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711078

Key words

Navigation