Skip to main content

Anatomy and Molecular Basis of Autonomic Innervation of the Heart

  • Chapter
  • First Online:
Atlas of Cardiac Innervation

Abstract

The heart is innervated extensively by sympathetic and parasympathetic nerves of the peripheral autonomic nervous system, as well as by sensory nerves. Most sympathetic neurons use norepinephrine as a primary neurotransmitter. Acetylcholine is the main neurotransmitter released by preganglionic and postganglionic vagal nerve terminals, which wrap around the heart and activate the parasympathetic nervous system. Sympathetic and parasympathetic systems exert opposite effects on the heart to regulate the contractile rate and force. Sympathetic nerves increase both heart rate (positive chronotropy) and contractile function (positive inotropy), whereas parasympathetic nerves diminish heart rate (bradycardia) and attenuate sympathetic effects on contractile function. Under normal conditions, the two systems are well balanced to maintain a normal response to external stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsuchimochi S, Tamaki N, Tadamura E, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med. 1995;36:969–74.

    CAS  PubMed  Google Scholar 

  2. Ieda M, Fukuda K. Cardiac innervation and sudden cardiac death. Curr Cardiol Rev. 2009;5:289–95.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol. 1985;17:291–306.

    Article  CAS  PubMed  Google Scholar 

  4. Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307:205–11.

    Article  CAS  PubMed  Google Scholar 

  5. Bristow MR, Ginsburg R, Umans V, et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res. 1986;59:297–309.

    Article  CAS  PubMed  Google Scholar 

  6. Port JD, Bristow MR. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol. 2001;33:887–905.

    Article  CAS  PubMed  Google Scholar 

  7. Merlet P, Merlet P, Valette H, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med. 1992;33:471–7.

    CAS  PubMed  Google Scholar 

  8. Verberne HJ, Brewster LM, Somsen GA, et al. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.

    Article  PubMed  Google Scholar 

  9. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  10. Tamaki S, Yamada T, Okuyama Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53:426–35.

    Article  CAS  PubMed  Google Scholar 

  11. Fallavollita JA, Heavey BM, Luisi Jr AJ, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9.

    Article  PubMed  Google Scholar 

  12. Kimura K, Ieda M, Fuluda K. Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res. 2012;110:325–36.

    Article  CAS  PubMed  Google Scholar 

  13. Haider N, Baliga RR, Chandrashekhar Y, et al. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure poverty in the presence of plenty. JACC Cardiovasc Imaging. 2010;3:71–5.

    Article  PubMed  Google Scholar 

  14. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335:1182–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ellison KE, Stevenson WG, Sweeney MO, et al. Management of arrhythmias in heart failure. Congest Heart Fail. 2003;9:91–9.

    Article  PubMed  Google Scholar 

  16. Bylund DB, Eikenberg DC, Hieble JP, et al. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev. 1994;46:121–36.

    CAS  PubMed  Google Scholar 

  17. Brodde OE. Beta-adrenoceptors in cardiac disease. Pharmacol Ther. 1993;60:405–30.

    Article  CAS  PubMed  Google Scholar 

  18. Gauthier C, Tavernier G, Charpentier F, et al. Functional beta3-adrenoceptor in the human heart. J Clin Invest. 1996;98:556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reiter E, Lefkowitz RJ. GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab. 2006;17:159–65.

    Article  CAS  PubMed  Google Scholar 

  20. Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001;53:1–24.

    CAS  PubMed  Google Scholar 

  21. Lohse MJ, Engelhardt S, Danner S, et al. Mechanisms of beta-adrenergic receptor desensitization: from molecular biology to heart failure. Basic Res Cardiol. 1996;91 Suppl 2:29–34.

    Article  CAS  PubMed  Google Scholar 

  22. Brodde OE. Beta-adrenergic receptors in failing human myocardium. Basic Res Cardiol. 1996;91 Suppl 2:35–40.

    Article  CAS  PubMed  Google Scholar 

  23. Eschenhagen T. Beta-adrenergic signaling in heart failure-adapt or die. Nat Med. 2008;14:485–7.

    Article  CAS  PubMed  Google Scholar 

  24. Woodall MC, Ciccarelli M, Woodall BP, et al. G protein–coupled receptor kinase 2, a link between myocardial contractile function and cardiac metabolism. Circ Res. 2014;114:1661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Estorch M, Estorch M, Serra-Grima R, et al. Myocardial sympathetic innervation in the athlete’s sinus bradycardia: is there selective inferior myocardial wall denervation? J Nucl Cardiol. 2000;7:354–8.

    Article  CAS  PubMed  Google Scholar 

  26. Beckers F, Ramaekers D, Speijer G, et al. Different evolutions in heart rate variability after heart transplantation: 10-year follow-up. Transplantation. 2004;78:1523–31.

    Article  PubMed  Google Scholar 

  27. Gaer J. Physiological consequences of complete cardiac denervation. Br J Hosp Med. 1992;48:220–5.

    CAS  PubMed  Google Scholar 

  28. Thompson CJ. Denervation of the transplanted heart: nursing implications for patient care. Crit Care Nurs Q. 1995;17:1–14.

    Article  CAS  PubMed  Google Scholar 

  29. Uberfuhr P, Frey AW, Fuchs A, et al. Signs of vagal reinnervation 4 years after heart transplantation in spectra of heart rate variability. Eur J Cardiothorac Surg. 1997;12:907–12.

    Article  CAS  PubMed  Google Scholar 

  30. Bengel FM, Bengel FM, Ueberfuhr P, et al. Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation. 2002;106:831–5.

    Article  PubMed  Google Scholar 

  31. Bengel FM, Ueberfuhr P, Schiepel N, et al. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med. 2001;345:731–8.

    Article  CAS  PubMed  Google Scholar 

  32. Uberfuhr P, Ziegler S, Schwaiblmair M, et al. Incomplete sympathic reinnervation of the orthotopically transplanted human heart: observation up to 13 years after heart transplantation. J Cardiothorac Surg. 2000;17:161–8.

    Article  CAS  Google Scholar 

  33. Murphy DA, Thompson GW, Ardell JL, et al. The heart reinnervates after transplantation. Ann Thorac Surg. 2000;69:1769–81.

    Article  CAS  PubMed  Google Scholar 

  34. Bengel FM, Ueberfuhr P, Ziegler SI, et al. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation. 1999;99:1866–71.

    Article  CAS  PubMed  Google Scholar 

  35. De Marco T, Dae M, Yuen-Green MS, et al. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. J Am Coll Cardiol. 1995;25:927–31.

    Article  PubMed  Google Scholar 

  36. Estorch M, Campreciós M, Flotats A, et al. Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med. 1999;40:911–6.

    CAS  PubMed  Google Scholar 

  37. Momose M, Momose M, Kobayashi H, et al. Regional cardiac sympathetic reinnervation in transplanted human hearts detected by 123I-MIBG SPECT imaging. Ann Nucl Med. 2000;14:333–7.

    Article  CAS  PubMed  Google Scholar 

  38. Suvanto P, Hiltunen JO, Arumäe U, et al. Localization of glial cell line-derived neurotrophic factor (GDNF) mRNA in embryonic rat by in situ hybridization. Eur J Neurosci. 1996;8:816–22.

    Article  CAS  PubMed  Google Scholar 

  39. Snider WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell. 1994;77:627–38.

    Article  PubMed  Google Scholar 

  40. Baloh RH, Tansey MG, Lampe PA, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron. 1998;21:1291–302.

    Article  CAS  PubMed  Google Scholar 

  41. Crowley C, Spencer SD, Nishimura MC, et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell. 1994;76:1001–11.

    Article  CAS  PubMed  Google Scholar 

  42. Ieda M, Kanazawa H, Ieda Y, et al. Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation. 2006;114:2351–63.

    Article  CAS  PubMed  Google Scholar 

  43. Hassankhani A, Steinhelper ME, Soonpaa MH, et al. Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev Biol. 1995;169:309–21.

    Article  CAS  PubMed  Google Scholar 

  44. Fagan AM, Fagan AM, Zhang H, et al. TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J Neurosci. 1996;16:6208–18.

    CAS  PubMed  Google Scholar 

  45. Glebova NO, Ginty DD. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci. 2004;24:743–51.

    Article  CAS  PubMed  Google Scholar 

  46. Sharma N, Deppmann CD, Harrington AW, et al. Long-distance control of synapse assembly by target-derived NGF. Neuron. 2010;67:422–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ieda M, Kanazawa H, Kimura K, et al. Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med. 2007;13:604–12.

    Article  CAS  PubMed  Google Scholar 

  48. Hiltunen JO, Hiltunen JO, Laurikainen A, et al. GDNF family receptors in the embryonic and postnatal rat heart and reduced cholinergic innervation in mice hearts lacking ret or GFRalpha2. Dev Dyn. 2000;219:28–39.

    Article  CAS  PubMed  Google Scholar 

  49. Honma Y, Araki T, Gianino S, et al. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron. 2002;35:267–82.

    Article  CAS  PubMed  Google Scholar 

  50. Damon DH, Teriele JA, Marko SB. Vascular-derived artemin: a determinant of vascular sympathetic innervation? Am J Physiol Heart Circ Physiol. 2007;293:H266–73.

    Article  CAS  PubMed  Google Scholar 

  51. Miwa K, Lee JK, Takagishi Y, et al. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF). PLoS One. 2013;8:e65202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shcherbakova OG, Hurt CM, Xiang Y, et al. Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. J Cell Biol. 2007;176:521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miwa K, Lee JK, Takagishi Y, et al. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages. Biomed Res. 2010;31:353–61.

    Article  CAS  PubMed  Google Scholar 

  54. Chen LS, Zhou S, Fishbein MC, et al. New perspectives on the role of autonomic nervous system in the genesis of arrhythmias. J Cardiovasc Electrophysiol. 2007;18:123–7.

    Article  PubMed  Google Scholar 

  55. Backs J, Haunstetter A, Gerber SH, et al. The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation. J Mol Cell Cardiol. 2001;33:461–72.

    Article  CAS  PubMed  Google Scholar 

  56. Hasking GJ, Esler MD, Jennings GL, et al. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.

    Article  CAS  PubMed  Google Scholar 

  57. Momose M, Kobayashi H, Iguchi N, et al. Comparison of parameters of 123I-MIBG scintigraphy for predicting prognosis in patients with dilated cardiomyopathy. Nucl Med Commun. 1999;20:529–35.

    Article  CAS  PubMed  Google Scholar 

  58. Turpeinen AK, Vanninen E, Kuikka JT, et al. Demonstration of regional sympathetic denervation of the heart in diabetes. Comparison between patients with NIDDM and IDDM. Diabetes Care. 1996;19:1083–90.

    Article  CAS  PubMed  Google Scholar 

  59. Schnell O, Muhr D, Weiss M, et al. Reduced myocardial 123I-metaiodobenzylguanidine uptake in newly diagnosed IDDM patients. Diabetes. 1996;45:801–5.

    Article  CAS  PubMed  Google Scholar 

  60. Hattori N, Tamaki N, Hayashi T, et al. Regional abnormality of iodine-123-MIBG in diabetic hearts. J Nucl Med. 1996;37:1985–90.

    CAS  PubMed  Google Scholar 

  61. Stevens MJ, Dayanikli F, Raffel DM, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol. 1998;31:1575–84.

    Article  CAS  PubMed  Google Scholar 

  62. Chugh SS, Reinier K, Teodorescu C, et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis. 2008;51:213–28.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zheng ZJ, Croft JB, Giles WH, et al. Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001;104:2158–63.

    Article  CAS  PubMed  Google Scholar 

  64. Cao JM, Fishbein MC, Han JB, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101:1960–9.

    Article  CAS  PubMed  Google Scholar 

  65. Rubart M, Zipes DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005;115:2305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cao JM, Chen LS, KenKnight BH, et al. Nerve sprouting and sudden cardiac death. Circ Res. 2000;86:816–21.

    Article  CAS  PubMed  Google Scholar 

  67. Fishbein MC, Chen PS, Chen LS, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 2001;50:409–16.

    Article  PubMed  Google Scholar 

  68. Held P, Yusuf S. Early intravenous beta-blockade in acute myocardial infarction. Cardiology. 1989;76:132–43.

    Article  CAS  PubMed  Google Scholar 

  69. Hjalmarson A, Elmfeldt D, Herlitz J, et al. Effect on mortality of metoprolol in acute myocardial infarction. A double-blind randomised trial. Lancet. 1981;2:823–7.

    Article  CAS  PubMed  Google Scholar 

  70. Norris RM, Barnaby PF, Brown MA, et al. Prevention of ventricular fibrillation during acute myocardial infarction by intravenous propranolol. Lancet. 1984;2:883–6.

    Article  CAS  PubMed  Google Scholar 

  71. Zuanetti G, De Ferrari GM, Priori SG, et al. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res. 1987;61:429–35.

    Article  CAS  PubMed  Google Scholar 

  72. De Ferrari GM, Mantica M, Vanoli E, et al. Scopolamine increases vagal tone and vagal reflexes in patients after myocardial infarction. J Am Coll Cardiol. 1993;22:1327–34.

    Article  PubMed  Google Scholar 

  73. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83.

    Article  PubMed  Google Scholar 

  74. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    Article  CAS  PubMed  Google Scholar 

  75. Passman R, Goldberger JJ. Predicting the future: risk stratification for sudden cardiac death in patients with left ventricular dysfunction. Circulation. 2012;125:3031–7.

    Article  PubMed  Google Scholar 

  76. Lorvidhaya P, Lorvidhaya P, Addo K, et al. Sudden cardiac death risk stratification in patients with heart failure. Heart Fail Clin. 2011;7:157–74.

    Article  PubMed  Google Scholar 

  77. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63.

    Article  CAS  PubMed  Google Scholar 

  78. Boogers MJ, Borleffs CJ, Henneman MM, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasken Dilsizian MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, W., Dilsizian, V. (2017). Anatomy and Molecular Basis of Autonomic Innervation of the Heart. In: Dilsizian, V., Narula, J. (eds) Atlas of Cardiac Innervation. Springer, Cham. https://doi.org/10.1007/978-3-319-45800-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45800-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45798-7

  • Online ISBN: 978-3-319-45800-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics