Skip to main content
Log in

The Activities of Antioxidant Enzymes and the Glutathione Content of the Digestive Organs in Marine Invertebrates from Possiet Bay, Sea of Japan

  • Original Papers
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The main components of the antioxidant (AO) system, that is, the activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, as well as the glutathione content of cells of the digestive organs, have been measured in 26 species of marine invertebrates that belong to four taxonomic groups from the Possiet Bay, Sea of Japan. It has been shown that the activities of antioxidant enzymes and glutathione content are species specific. In the digestive organs of echinoderms, the activities of antioxidant enzymes and the glutathione content are generally higher compared with those in mollusks. All the studied species exhibit the greatest variability in the activities of catalase and glutathione peroxidase; the lowest variability occurred in activities of superoxide dismutase and glutathione content. The possible causes of the differences in the levels of the investigated components of the AO system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belcheva, N.N., Istomina, A.A., Kudryashova, Yu.V., and Chelomin, V.P., Marine environment assessment based on oxidative stress indicators and heavy metal content in tissues of the mussel Crenomytilus grayanus (Dunker, 1853) (Bivalvia: Mytilidae), Biol. Morya (Vladivostok, Russ. Fed.), 2013, vol. 39, no. 4, pp. 281–286.

    Google Scholar 

  2. Dembitskii, V.M., Plasmalogens in phospholipids of marine invertebrates, Sov. J. Mar. Biol., 1979, vol. 5, no. 5, pp. 445–448.

    Google Scholar 

  3. Dolmatov, I.Yu. and Mashanov, V.S., Regeneratsiya u goloturii (Regeneration in Holothurians), Vladivostok: Dal’nauka, 2007.

    Google Scholar 

  4. Kuznetsov, A.P., Ekologiya donnykh soobshchestv Mirovogo okeana (Ecology of Benthic Communities in the World Ocean), Moscow: Nauka, 1980.

    Google Scholar 

  5. Fokina, N.N., Ruokolainen, T.R., Nemova, N.N., and Bakhmet, I.N., Alteration of the lipid composition in blue mussels Mytilus edulis L. as a result of their acclimation to laboratory conditions, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, 2015, no. 11, pp. 76–84.

    Google Scholar 

  6. Khristoforova, N.K., Shul’kin, V.M., Kavun, V.Ya., and Chernova, E.N., Tyazhelye metally v promyslovykh i kul’tiviruemykh mollyuskakh zaliva Petra Velikogo (Heavy Metals in Commercial and Cultivated Mollusks of Peter the Great Bay), Vladivostok: Dal’nauka, 1994.

    Google Scholar 

  7. Abele, D., Brey, T., and Philipp, E., Bivalve models of aging and the determination of molluscan lifespans, Exp. Gerontol., 2009, vol. 44, pp. 307–315.

    Article  PubMed  Google Scholar 

  8. Abele, D. and Puntarulo, S., Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2004, vol. 138, pp. 405–415.

    Article  CAS  Google Scholar 

  9. Buettner, G.R., The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate, Arch. Biochem. Biophys., 1993, vol. 300, no. 2, pp. 535–543.

    Article  PubMed  CAS  Google Scholar 

  10. Buttemer, W.A., Abele, D., and Costantini, D., From bivalves to birds: oxidative stress and longevity, Funct. Ecol., 2010, vol. 24, pp. 971–983.

    Article  Google Scholar 

  11. Cooper, W.J. and Zika, R.G., Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight, Science, 1983, vol. 220, pp. 711–712.

    Article  PubMed  CAS  Google Scholar 

  12. Estevez, M.S., Abele, D., and Puntarulo, S., Lipid radical generation in polar (Laternula elliptica) and temperate (Mya arenaria) bivalves, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2002, vol. 132, pp. 729–737.

    Article  Google Scholar 

  13. Filho, D.W., Tribess, T., Gáspari, C., et al., Seasonal changes in antioxidant defenses of the digestive gland of the brown mussel (Perna perna), Aquaculture, 2001, vol. 203, pp. 149–158.

    Article  Google Scholar 

  14. Funes, V., Alhama, J., Navas, J.I., et al., Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral, Environ. Pollut., 2006, vol. 139, pp. 214–223.

    Article  PubMed  CAS  Google Scholar 

  15. Gamble, S.C., Goldfarb, P.S., Porte, C., and Livingstone, D.R., Glutathione peroxidase and other antioxidant enzyme function in marine invertebrates (Mytilus edulis, Pecten maximus, Carcinus maenas, and Asterias rubens), Mar. Environ. Res., 1995, vol. 39, pp. 191–195.

    Article  CAS  Google Scholar 

  16. Gorbi, S., Lamberti, C.V., Notti, A., et al., An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, for monitoring the impact of an offshore platform in the Adriatic Sea, Mar. Environ. Res., 2008, vol. 65, pp. 34–49.

    Article  PubMed  CAS  Google Scholar 

  17. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Oxford: Oxford Univ. Press, 2007, 4th ed.

    Google Scholar 

  18. Hermes-Lima, M., Storey, J.M., and Storey, K.B., Antioxidant defenses and animal adaptation to oxygen availability during environmental stress, Cell and Molecular Response to Stress, Amsterdam: Elsevier, 2001, vol. 2, ch. 20, pp. 263–287.

    Article  CAS  Google Scholar 

  19. Janssens, B.J., Childress, J.J., Baguet, F., and Rees, J.F., Reduced enzymatic antioxidative defense in deep-sea fish, J. Exp. Biol., 2000, vol. 203, pp. 3717–3725.

    PubMed  CAS  Google Scholar 

  20. Letendre, J., Leboulenger, F., and Durand, F., Oxidative challenge and redox sensing in mollusks: effects of natural and anthropic stressors, Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling, Farooqui, T. and Farooqui, A.A., Eds., New York: Wiley, 2012, ch. 26, pp. 361–376.

    Google Scholar 

  21. Lopez-Torres, M., Pérez-Campo, R., Rojas, C., et al., Maximum life span in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate, sensitivity to peroxidation, true malondialdehyde, in vivo H2O2, and basal maximum aerobic capacity, Mech. Ageing Dev., 1993, vol. 70, pp. 177–199.

    Article  PubMed  CAS  Google Scholar 

  22. Lushchak, V.L., Environmentally induced oxidative stress in aquatic animals, Aquat. Toxicol., 2011, vol. 101, pp. 13–30.

    Article  PubMed  CAS  Google Scholar 

  23. Manduzio, H., Rocher, B., Durand, F., et al., The point about oxidative stress in molluscs, Invertebr. Survival J., 2005, vol. 2, pp. 91–104.

    Google Scholar 

  24. Markwell, M.A., Haas, S.M., Bieber, L.L., and Tolbert, N.E., A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem., 1978, vol. 87, pp. 206–210.

    Article  PubMed  CAS  Google Scholar 

  25. Moron, M.S., Depierre, J.W., and Mannervik, B., Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver, Biochim. Biophys. Acta, 1979, vol. 582, pp. 67–78.

    Article  PubMed  CAS  Google Scholar 

  26. Pamplona, R. and Costantini, D., Molecular and structural antioxidant defenses against oxidative stress in animals, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 301, pp. R843–R863.

    Article  PubMed  CAS  Google Scholar 

  27. Paoletti, F., Aldinucci, D., Mocali, A., and Caparrini, A., A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts, Anal. Biochem., 1986, vol. 154, pp. 536–541.

    Article  PubMed  CAS  Google Scholar 

  28. Regoli, F. and Principato, G., Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers, Aquat. Toxicol., 1995, vol. 31, pp. 143–164.

    Article  CAS  Google Scholar 

  29. Regoli, F., Principato, G.B., Bertoli, E., et al., Biochemical characterization of the antioxidant system in the scallop Adamussium colbecki, a sentinel organism for monitoring the Antarctic environment, Polar Biol., 1997, vol. 17, pp. 251–258.

    Article  Google Scholar 

  30. Storey, K.B., Oxidative stress: animal adaptations in nature, Braz. J. Med. Biol. Res., 1996, vol. 29, pp. 1715–1733.

    PubMed  CAS  Google Scholar 

  31. Takagi, T. and Miyashita, K., Autoxidative rates of nonmethylene-interrupted polyenoic fatty acids, J. Am. Oil Chem. Soc., 1987, vol. 64, pp. 407–413.

    Article  CAS  Google Scholar 

  32. Valko, M., Leibfritz, D., Moncol, J., et al., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 2007, vol. 39, pp. 44–84.

    Article  PubMed  CAS  Google Scholar 

  33. Viarengo, A., Canesi, L., Pertica, M., and Livingstone, D.R., Seasonal variations in the antioxidant defence systems and lipid peroxidation of the digestive gland of mussels, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 1991, vol. 100, nos. 1–2, pp. 187–190.

    Article  CAS  Google Scholar 

  34. Winston, G.W. and Di Giulio, R.T., Prooxidant and antioxidant mechanisms in aquatic organisms, Aquat. Toxicol., 1991, vol. 19, pp. 137–161.

    Article  CAS  Google Scholar 

  35. Winterbourn, C.C., Superoxide as an intracellular radical sink, Free Radical Biol. Med., 1993, vol. 14, no. 1, pp. 85–90.

    Article  CAS  Google Scholar 

  36. Zhukova, N.V. and Svetashev, V.I., Non-methyleneinterrupted dienoic fatty acids in mollusks from the Sea of Japan, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1986, vol. 83, no. 3, pp. 643–646.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Istomina.

Additional information

Original Russian Text © A.A. Istomina, V.P. Chelomin, N.V. Dovzhenko, V.V. Kurilenko, Yu.V. Fedorets, N.N. Belcheva, 2018, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istomina, A.A., Chelomin, V.P., Dovzhenko, N.V. et al. The Activities of Antioxidant Enzymes and the Glutathione Content of the Digestive Organs in Marine Invertebrates from Possiet Bay, Sea of Japan. Russ J Mar Biol 44, 340–345 (2018). https://doi.org/10.1134/S1063074018040041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074018040041

Keywords

Navigation