Skip to main content
Log in

Low molecular weight, polymeric, and covalently bound cobalt(II)-phthalocyanines for the oxidation of mercaptans

  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

Cobalt(II)-phthalocyanines in different environments are investigated as catalysts for the oxidation of thiols. Water-soluble low molecular weight 2,9,10,23-tetracarboxyphthalocyanine (1b) and polymeric phthalocyanine (2b) with carboxylic end groups are prepared. Compound1b is covalently bound at linear and cross-linked poly(chloromethylstyrene) in the presence of pyridine to obtain the water-soluble polymers (3a, b) and gel-type polymers (4a, b). Covalent binding of1b to surface modified silica was also realized. Low molecular weight and polymeric phthalocyanines (1a, 2a) are synthesized on silica, alumina, and charcoal. In addition,1a is encapsulated in the interior of NaX zeolite. All materials are efficient catalysts for the oxidation of 2-mercaptoethanol. The mechanism employing water-soluble catalysts is discussed in the direction of a mononuclear complex coordinating dioxygen and thiol. Heterogeneous catalysts containing1a and2a on the carriers show enhanced activity with increasing dispersion. The proposed mechanism considers different reaction sites for the coordination of O2 and thiol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Brown, W. K. T. Gleim, and P. Urban,Oil Gas 57, 73 (1959).

    Google Scholar 

  2. J. R. Salazar, inHandbook of Petroleum Processes, R. A. Meyers, ed. (McGraw-Hill, New York, 1986), Part 9.

    Google Scholar 

  3. G. M. Whiteside, J. Houk, and M. A. K. Patterson,J. Org. Chem. 48, 112 (1983).

    Google Scholar 

  4. J. Zwart, H. C. van der Weide, N. Bröker, C. Rummens, G. C. A. Schuit, and A. L. German,J. Mol. Catal. 3, 151 (1977/78).

    Google Scholar 

  5. P. K. Leung and M. R. Hoffmann,Environ. Sci. Technol. 22, 275 (1988).

    Google Scholar 

  6. J. van Welzen, A. M. van Herk, and A. L. German,Makromol. Chem. 188, 1923 (1987).

    Google Scholar 

  7. H. Shirai, A. Maruyama, K. Kobayashi, N. Hojo, and K. Urushido,Makromol. Chem. 181, 575 (1980).

    Google Scholar 

  8. D. Wöhrle and E. Preußner,Makromol. Chem. 186, 2189 (1985).

    Google Scholar 

  9. G. Knothe and D. Wöhrle,Makromol. Chem. 190, 1573 (1989).

    Google Scholar 

  10. G. D. Shields and L. J. Boucher,J. Inorg. Nucl. Lett. 40, 1341 (1978).

    Google Scholar 

  11. D. Wöhrle, U. Hündorf, G. Schulz-Ekloff, and E. Ignatzek,Z. Naturforsch. 41b, 179 (1986).

    Google Scholar 

  12. D. Wöhrle, T. Buck, U. Hündorf, G. Schulz-Ekloff, and A. Andreev,Makromol. Chem. 190, 961 (1989).

    Google Scholar 

  13. S. Briese-Gülban, H. Kompa, H. Schrübbers, and G. Schulz-Ekloff,React. Kinet. Catal. Lett. 20, 7 (1982).

    Google Scholar 

  14. G. Meyer, D. Wöhrle, M. Mohl, and G. Schulz-Ekloff,Zeolites 4, 30 (1984).

    Google Scholar 

  15. C. C. Leznoff and A. B. P. Lever,Phthalocyanines, Properties and Applications (VCH, New York 1989).

    Google Scholar 

  16. Y.-C. Yang, J. R. Ward, and R. P. Seiders,Inorg. Chem. 24, 1765 (1985).

    Google Scholar 

  17. H. Sigel, P. Waldmeier, and B. Prijs,Inorg. Nucl. Chem. Lett. 7, 161 (1971).

    Google Scholar 

  18. E. W. Abel, J. M. Pratt, and R. Whelan,J. Chem. Soc. Dalton Trans. 1976, 509 (1976).

    Google Scholar 

  19. D. Wöhrle, G. Krawczyk, J. Gitzel, E. Tsuchida, H. Ohno, I. Okura, and T. Nishisaka,J. Makromol. Sci. A25, 1227 (1988).

    Google Scholar 

  20. E. A. Lucia and F. D. Verderame,J. Chem. Phys. 48, 2674 (1968).

    Google Scholar 

  21. J. Friedrich and D. Haarer,Angew. Chem. 96, 96 (1984).

    Google Scholar 

  22. G. Schulz-Ekloff, D. Wöhle, V. Iliev, E. Ignatzek, and A. Andreev, inZeolites as Catalysts, Sorbents and Detergent Builders, H. Karge and J. Weitkamp, eds. (Elsevier, Amsterdam, 1989), Stud. Surf. Sci. Catal., Vol. 46, p. 315.

    Google Scholar 

  23. J. A. de Bolfo, T. D. Smith, J. F. Boas, and J. R. Pilbrow,J. Chem. Soc. Faraday Trans. 2 72, 481 (1976).

    Google Scholar 

  24. J. Zwart and J. H. van Wolput,J. Mol. Catal. 5, 235 (1985).

    Google Scholar 

  25. J. H. Schutten and J. Zwart,J. Mol. Catal. 5, 109 (1979).

    Google Scholar 

  26. J. H. Schutten, P. Piet, and A. L. German,Makromol. Chem. 180, 2341 (1979).

    Google Scholar 

  27. W. M. Brouwer, P. Piet, and A. L. German,J. Mol. Catal. 29, 235, 347 (1985);J. Mol. Catal. 31, 169 (1985).

    Google Scholar 

  28. D. Wöhrle, H. Bohlen, and J. K. Blum,Makromol. Chem. 187, 2081 (1986).

    Google Scholar 

  29. P. S. Surdhar and D. A. Armstrong,J. Phys. Chem. 91, 6532 (1987).

    Google Scholar 

  30. A. Skorobogaty and T. D. Smith,J. Mol. Catal. 16, 131 (1982).

    Google Scholar 

  31. J. H. Schutten and T. P. M. Beelen,J. Mol. Catal. 10, 85 (1980).

    Google Scholar 

  32. D. Wöhrle,Adv. Polym. Sci. 50, 45 (1983).

    Google Scholar 

  33. E. Yeager,Electrochim. Acta 29, 1527 (1984).

    Google Scholar 

  34. L. Meites and P. Zumann,Handbook of Organic Electrochemistry (CRC Press, Cleveland 1977).

    Google Scholar 

  35. G. Milazzo and S. I. Caroli,Tables of Standard Electrode Potentials (John Wiley and Sons, New York, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wöhrle, D., Buck, T., Schneider, G. et al. Low molecular weight, polymeric, and covalently bound cobalt(II)-phthalocyanines for the oxidation of mercaptans. J Inorg Organomet Polym 1, 115–130 (1991). https://doi.org/10.1007/BF00701033

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00701033

Key words

Navigation