Skip to main content
Log in

Thermodynamic and rheological properties of rhyolite and andesite melts

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The heat capacities of a rhyolite and an andesite glass and liquid have been investigated from relative-enthalpy measurements made between 400 and 1800 K. For the glass phases, the experimental data agree with empirical models of calculation of the heat capacity. For the liquid phases, the agreement is less good owing to strong interactions between alkali metals and aluminum, which are not currently accounted for by empirical heat capacity models. The viscosity of both liquids has been measured from the glass transition to 1800 K. The temperature dependence of the viscosity is quantitatively related to the configurational heat capacity (determined calorimetrically) through the configurational entropy theory of relaxation processes. For both rhyolite and andesite melts, the heat capacity and viscosity do not differ markedly from those obtained by additive modeling from components with mineral compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    Google Scholar 

  • Bacon CR (1977) High-temperature heat content and heat capacity of silicate glasses: experimental determination and a model for calculation. Am J Sci 277:109–135

    Google Scholar 

  • Bockris JO' M, Lowe DC (1954) Viscosity and structure of molten silicates. Proc R Soc London A 226:423–435

    Google Scholar 

  • Bottinga Y, Weill DF (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components Am J Sci 269:169–182

    Google Scholar 

  • Bottinga Y, Weill DF (1972) The viscosity of magmatic liquids: a model for calculation. Am J Sci 272:438–475

    Google Scholar 

  • Bowen NL (1928) The evolution of the igneous rocks. Dover Publications Inc, New York (Reprinted 1956)

    Google Scholar 

  • Carmichael ISE, Nicholls J, Spera FJ, Wood BJ, Nelson SA (1977) High-temperature of silicate liquids: application to the equilibration and ascent of basic magma. Philos Trans R Soc London A 286:373–431

    Google Scholar 

  • Carron JP (1969) Recherche sur la viscosité et les phénomènes de transport des ions alcalins dans les obsidiennes granitiques. Trav Lab Géol, no3, Ec Norm Supér, Paris

  • Clemens JD, Navrotsky AN (1987) Mixing properties of NaAlSi3O8 melt-H2O: new calorimetric data and some geological implications. J Geol 95:173–186

    Google Scholar 

  • Cukierman M, Uhlmann DR (1973) Viscosity of liquid anorthite. J Geophys Res 78:4920–4923

    Google Scholar 

  • Dingwell DB (1989) Effect of fluorine on the viscosity of diopside liquid. Am Mineral 74:333–338

    Google Scholar 

  • Dingwell DB, Virgo D (1987) The effect of oxidation state on the viscosity of melt in the system Na2O−FeO−Fe2O3−SiO2. Geochim Cosmochim Acta 51:195–205

    Google Scholar 

  • Hummel W, Arndt J (1985) Variation of viscosity with temperature and composition in the plagioclase system. Contrib Mineral Petrol 90:83–92

    Google Scholar 

  • Klein LC, Fasano BV, Wu JM (1983) Viscous flow behavior of four iron-containing silicates with alumina, effects of composition and oxidation condition. J Geophys Res 88:A880-A886

    Google Scholar 

  • Kress VC, Carmichael ISE (1988) The lime-iron-silicate melt system: redox and volume systematics. Geochim Cosmochim Acta 53:2883–2892

    Google Scholar 

  • Lange RA, Navrotsky A (1992) Heat capacities of Fe2O3-bearing silicate liquids. Contrib Mineral Petrol 110:311–320

    Google Scholar 

  • Leko BK (1979) Viscosity of vitreous silica. Fiz Khim Stekla 5:258–278

    Google Scholar 

  • Lejeune AM, Richet P (1991) Rheology of magmas. Terra Abstr 3:445

    Google Scholar 

  • Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high temperatures. Geol Soc Am Bull 84:3563–3592

    Google Scholar 

  • Mysen BO (1988) Structure and properties of silicate melts. Elsevier, Amsterdam New York

    Google Scholar 

  • Neuville DR, Richet P (1991) Viscosity and (Ca, Mg) mixing in molten pyroxenes and garnets. Geochim Cosmochim Acta 55:1011–1021

    Google Scholar 

  • Newman S, Stolper EM, Epstein S (1986) Measurement of water rhyolitic glasses: calibration of an infrared spectroscopic technique. Am Mineral 71:1527–1541

    Google Scholar 

  • Regnard IR, Chavez-Rivas F, Chappert J (1981) Study of the oxydation states and magnetic properties of iron in volcanic glasses: Lipari and Teotihuacan obsidians. Bull Minéral 104:204–210

    Google Scholar 

  • Richet P (1984) Viscosity and configurational entropy of silicate melts. Geochim Cosmochim Acta 48:471–483

    Google Scholar 

  • Richet P (1987) Heat capacity of silicate glasses. Chem Geol 62:111–124

    Google Scholar 

  • Richet P, Bottinga Y (1984a) Glass transitions and thermodynamic properties of amorphous SiO2, NaAlSinO2n+2 and KAlSi3O8. Geochim Cosmochim Acta. 48:453–470

    Google Scholar 

  • Richet P, Bottinga Y (1984b) Anorthite, andesine, diopside, wollastonite, cordierite and pyrope: thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth Planet Sci Lett 67:415–432

    Google Scholar 

  • Richet P, Bottinga Y (1985) Heat capacity of aluminum-free liquid silicates. Geochim Cosmochim Acta 49:471–486

    Google Scholar 

  • Richet P, Bottinga Y (1986) Thermochemical properties of silicate glasses and liquids: a review. Rev Geophys 24:1–25

    Google Scholar 

  • Richet P, Neuville DR (1992) Thermodynamics of silicate melts: configurational properties. Adv Phys Geochem 10:132–160

    Google Scholar 

  • Richet P, Bottinga Y, Deniélou L, Petitet JP, Téqui C (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim Cosmochim Acta 46:2639–2658

    Google Scholar 

  • Richet P, Robie RA, Hemingway BS (1986) Low-temperature heat capacity of diopside glass (CaMgSi2O6): a calorimetric test of the configurational entropy theory applied to the viscosity of liquid silicates. Geochim Cosmochim Acta 50:1521–1533

    Google Scholar 

  • Richet P, Gillet P, Fiquet G (1992) Thermodynamic properties of minerals: macroscopic and microscopic approaches. Adv Phys Geochem 10:98–131

    Google Scholar 

  • Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700°C to 900°C. J Geophys Res 68:6337–6343

    Google Scholar 

  • Stebbins JF, Weill DF, Carmichael ISE, Moret LK (1982) High-temperature heat contents and heat capacities of liquids and glasses in the system NaAlSi3O8−CaAl2Si2O8. Contrib Mineral Petrol 80:276–284

    Google Scholar 

  • Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicates liquids and glasses. Contrib Mineral Petrol 86:131–148

    Google Scholar 

  • Taylor TD, Rindone GE (1970) Properties of soda aluminosilicate glasses: V low-temperature viscosities. J Am Ceram Soc 53:692–695

    Google Scholar 

  • Urbain G, Bottinga Y, Richet P (1982) Viscosity of liquid silica, silicates and aluminosilicates. Geochim Cosmochim Acta 46:1061–1071

    Google Scholar 

  • Webb SL, Dingwell DB (1990a) Non-newtonian rheology of igneous melts at high stresses and strain rates: experimental results for rhyolite, andesite, basalt and nepheline J Geophys Res 95:15695–16701

    Google Scholar 

  • Webb SL, Dingwell DB (1990b) The onset of non-newtonian rheology of silicate melts. Phys Chem Minerals 17:125–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuville, D.R., Courtial, P., Dingwell, D.B. et al. Thermodynamic and rheological properties of rhyolite and andesite melts. Contr. Mineral. and Petrol. 113, 572–581 (1993). https://doi.org/10.1007/BF00698324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00698324

Keywords

Navigation