Skip to main content
Log in

The development of a novel strategy for the microbial treatment of acrylonitrile effluents

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Effluent from the manufacture of acrylonitrile is difficult to biodegrade. It contains nine major organic components: acetic acid, acrylonitrile, acrylamide, acrylic acid, acrolein, cyanopyridine, fumaronitrile, succinonitrile, and maleimide. A range of bacteria have been isolated that can grow on, or convert all of the organic components of effluent from the manufacture of acrylonitrile. These bacteria can be used as the basis of a mixed culture system to treat the effluent. The bacteria were utilised in batch and continuous cultures to degrade a synthetic wastewater containing acrylonitrile, acrylamide, acrylic acid, cyanopyridine and succinonitrile. The mixed microbial population was adapted by varying the growth rate and switching from continuous to batch and back to continuous growth, to degrade these five compounds as well as acrolein, fumaronitrile and maleimide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BOD:

Biological Oxygen Demand

COD:

Chemical Oxygen Demand

T D :

Doubling Time

ppm:

parts per million

HPLC:

High Pressure Liquid Chromatography

GLC:

Gas Liquid Chromatography

References

  • Arnaud A, Galzy P & Jallageas JC (1976a) Amidase activity of some bacteria. Folia Microbiologica 21: 178–184

    Google Scholar 

  • Arnaud A, Galzy P & Jallageas JC (1976b) Etude de l'activité nitrilasique de quelques bacteries. Revue des Fermentations et des Industries Alimentaires 31:39–44 Arnaud A, Galzy P & Jallageas JC (1977) Étude de l'acetonitrilase d'une souche deBrevibacterium. Agricultural and Biological Chemistry 41: 2183–2191

    Google Scholar 

  • Asano Y, Tani T & Yamada H (1980) A new enzyme ‘nitrile hydratase’ which degrades acetonitrile in combination with amidase. Agricultural and Biological Chemistry 44: 2251–2252

    Google Scholar 

  • Bauchop T & Elsden SR (1960) The growth of microorganisms in relation to their energy supply. Journal of General Microbiology 23: 457–469

    Google Scholar 

  • Cain RB (1984) Xenobiotic breakdown by mixed cultures. Biochemical Society Transactions 12: 1146–1148

    Google Scholar 

  • Catchpole JR & Stafford DA (1977) The biological treatment of coke-oven liquors. In: Callely AG, Forster CF & Stafford DA (Eds) Treatment of Industrial Effluents (pp 258–272) D.A. Hodder & Stoughton, UK

    Google Scholar 

  • Collins PA & Knowles CJ (1983) The utilization of nitriles and amides byNocardia rhodochrous. Journal of General Microbiology 129: 711–718

    Google Scholar 

  • Commeyras A, Arnaud A, Galzy P & Jallageas JC (1977) Process for the preparation of amides by biological hydrolysis. United States Patent 4,001,081

  • Cook AM, Grossenbacher H & Hutter R (1983) Isolation and cultivation of microbes with biodegradative potential. Experienta 39: 1191–1198

    Google Scholar 

  • Cowan ST & Steel KJ (1965) Manual for the identification of medical bacteria. Cambridge University Press

  • Dalton H & Stirling DI (1982) Co-metabolism. Philosophical Transactions of the Royal Society of London, Series B 297: 481–496

    Google Scholar 

  • DiGeronimo MJ & Antoine AD (1976) Metabolism of acetonitrile and propionitrile byNocardia rhodochrous LL100-21. Applied and Environmental Microbiology 31: 900–906

    Google Scholar 

  • Fawcett JK & Scott JE (1960) A rapid and precise method for the determination of urea. Journal of Clinical Pathology 13: 156–159

    Google Scholar 

  • Geyer BP (1962) Reaction with water. In: Smith CW (Ed) Acrolein (pp 144–153)

  • Gresseli JG (Ed) (1973) Atlas of spectral data and physical constants for organic compounds. C.R.C. Press

  • Hall ER & Melcer H (1983) Biotechnology developments for the treatment of toxic and inhibitory wastewaters. Biotechnology Advances 1: 59–71

    Google Scholar 

  • Harder W, Kuenen JG & Matin A (1977) Microbial selection in continuous culture. Journal of Applied Bacteriology 43: 1–24

    Google Scholar 

  • Harper DB (1976) Purification and properties of an unusual nitrilase fromNocardia NCIB 11216. Biochemical Society Transactions 4: 502–504

    Google Scholar 

  • Harper DB (1977a) Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage byNocardia sp. (Rhodochrous group) NCIB 11216. Biochemical Journal 165: 309–319

    Google Scholar 

  • Harper DB (1977b) Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage byFusarium solani. Biochemical Journal 167: 685–692

    Google Scholar 

  • Harper DB (1985) Characterisation of a nitrilase fromNocardia sp. (Rhodochrous group) NCIB 11215 using p-hydroxybenzonitrile as sole carbon source. International Journal of Biochemistry 17: 677–683

    Google Scholar 

  • Hook RH & Robinson WG (1964) Ricinine nitrilase II purification and properties. Journal of Biological Chemistry 239: 4263–427

    Google Scholar 

  • Jallageas JC, Arnaud A & Galzy P (1978) Etude l'acetamidase d'une souche deBrevibacterium. Journal of General and Applied Microbiology 24: 103–114

    Google Scholar 

  • Krieg NR (1981) Enrichment and isolation. In: Manual of Methods for General Bacteriology (pp 112–142) American Society for Microbiology

  • Kuwahara M, Yanase H, Kikuchi Y & Okazumi K (1980a) Metabolism of succinonitrile inAeromonas sp. Hako Kogaku Kaishi 58: 441–447

    Google Scholar 

  • Kuwahara M, Yanase H, Ishida Y & Kikuchi Y (1980b) Metabolism of aliphatic nitriles inFusarium solani. Journal of Fermentation Technology 58: 573–577

    Google Scholar 

  • Lande SS, Bosch SJ & Howard PH (1979) Degradation and leaching of acrylamide in soil. Journal of Environmental Quality 8: 133–137

    Google Scholar 

  • Linton EA & Knowles CJ (1986) Utilization of aliphatic amides and nitriles byNocardia rhodochrous LL100-21. Journal of General Microbiology 132: 1493–1401

    Google Scholar 

  • Miller JH (1972) Experiments in Molecular Genetics (p 431) Cold Spring Harbor Laboraotry, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Miller JM & Knowles CJ (1984) The cellular location of nitrilase and amidase enzymes ofBrevibacterium R312. FEMS Letters 21: 147–151

    Google Scholar 

  • Mimura A, Kawano T & Yamaga K (1969) Application of microorganisms to the Petrochemical Industry. 1. Assimilation of nitrile compounds by microorganisms. Journal of Fermentation Technology 47: 631–638

    Google Scholar 

  • Nagasawa T & Yamada H (1989) Microbial transformations of nitriles. Trends in Biotechnology 7: 153–158

    Google Scholar 

  • Palleroni NJ (1980) Isolation and properties of a new hydrogen bacterium related toPseudomonas saccharophila. Journal of General Microbiology 117: 155–161

    Google Scholar 

  • Robinson WG & Hook RH (1964) Ricinine nitrilase. Reaction product and substrate specificity. Journal of Biological Chemistry 239: 4257–4262

    Google Scholar 

  • Rohm & Haas Co. (1967) Fumaronitrile as a bactericide. U.S. Patent 1,489,570

  • Shukla OP (1984) Microbial transformations of pyridine derivatives. Journal Scient. Ind. Res. 43: 98–116

    Google Scholar 

  • Slater JH & Bull AT (1982) Environmental microbiology: Biodegradation. Philosophical Transactions of the Royal Society London Series B, 297: 575–597

    Google Scholar 

  • Sinskey AJ, Akedo M & Cooney CL (1981) Acrylate fermentations, Basic Life Science 18 (Trends Biol. Ferment. Fuels Chem.) 473–492

  • Thijsse GJE (1964) Fatty acid accumulation by acrylate inhibition of β-=oxidation in an alkane oxidisingPesudomonas. Biochem. Biophys. Acta 84: 195–197

    Google Scholar 

  • Thompson LA, Knowles CJ, Linton EA & Wyatt JM (1988) Microbial biotransformations of nitriles. Chemistry in Britain 900–902

  • Vaughan PA, Chetham PSJ & Knowles CJ (1988) The utilization of pyridine carbonitriles and carboxamides byNocardia rhodochrous LL100-21. Journal of General Microbiology 134: 1099–1107

    Google Scholar 

  • Watanabe M, Kuginuki H, Ono T, Ohsawa T, Taki K, Isaii K & Iwaki S (1974) Antiseptic for a metal cutting fluid. Japanese patent, 74,88,907

  • Wittcoff HA & Rueben BG (1980) Industrial organic chemicals in perspective. 1. Raw materials and manufacture. Wiley-Interscience

  • Yamada H, Asano Y, Hino T & Tani Y (1979) Microbial utilization of acrylonitrile. J. Ferment. Technol. 57: 8–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyatt, J.M., Knowles, C.J. The development of a novel strategy for the microbial treatment of acrylonitrile effluents. Biodegradation 6, 93–107 (1995). https://doi.org/10.1007/BF00695340

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695340

Key words

Navigation