Skip to main content
Log in

Bioaugmentation with isolated strains for the removal of toxic and refractory organics from coking wastewater in a membrane bioreactor

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The bioaugmentation strains for phenol, pyridine, quinoline, carbazole, and naphthalene degradation were employed to treat coking wastewater in a membrane bioreactor (MBR). The results showed that the bioaugmented MBR was much better in pollutant removal than that of the control MBR with conventional activated sludge. Compared to the control MBR, the bioaugmented MBR displayed an additional 3.2 mg/L of phenol, pyridine, quinoline, naphthalene and carbazole in total by the addition of the degrading strains. Also, about 10 % of the chemical oxygen demand in the effluent was further removed by the bioaugmentation. The pyrosequencing analysis of the sludge in the MBRs revealed that the microbial community shifted in response to the addition of the degrading strains. The diversity of the microbial community increased during the bioaugmentation, and some bacterial taxa favorable to the removal of toxic and refractory pollutants appeared in the bioaugmented MBR. The results indicated that the use of high-efficiency bacteria was a feasible method for industrial coking wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Aslam Z, Im WT, Kim MK, Lee ST (2005) Flavobacterium granuli sp. nov., isolated from granules used in a wastewater treatment plant. Int J Syst Evol Microbiol 55:747–751

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Sun Q, Zhao C, Wen D, Tang X (2008) Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001. Biodegradation 19:915–926

    Article  CAS  PubMed  Google Scholar 

  • Bai YH, Sun QH, Zhao C, Wen DH, Tang XY (2010) Bioaugmentation treatment for coking wastewater containing pyridine and quinoline in a sequencing batch reactor. Appl Microbiol Biotechnol 87:1943–1951

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Sun Q, Sun R, Wen D, Tang X (2011) Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters. Environ Sci Technol 45:1940–1948

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Shi Q, Wen D, Li Z, Jefferson WA, Feng C, Tang X (2012) Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China. PLoS ONE 7:e37796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boon N, Top EM, Verstraete W, Siciliano SD (2003) Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl Environ Microbiol 69:1511–1520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuller ME et al (2014) Laboratory evaluation of bioaugmentation for aerobic treatment of RDX in groundwater. Biodegradation 26:77–89

    Article  PubMed  Google Scholar 

  • Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikuma K, Gunsch CK (2012) Genetic bioaugmentation as an effective method for in situ bioremediation: functionality of catabolic plasmids following conjugal transfers. Bioengineered 3:236–241

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones SE, Lennon JT (2010) Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA 107:5881–5886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim YM, Park D, Lee DS, Park JM (2008) Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. J Hazard Mater 152:915–921

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Cho HU, Lee DS, Park C, Park D, Park JM (2011) Response of nitrifying bacterial communities to the increased thiocyanate concentration in pre-denitrification process. Bioresour Technol 102:913–922

    Article  CAS  PubMed  Google Scholar 

  • Kraigher B, Kosjek T, Heath E, Kompare B, Mandic-Mulec I (2008) Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res 42:4578–4588

    Article  CAS  PubMed  Google Scholar 

  • Lee TK, Doan TV, Yoo K, Choi S, Kim C, Park J (2010) Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX titanium pyrosequencing. Appl Microbiol Biotechnol 87:2335–2343

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Yan LH, Wang Y, Zhou SF, Fu JJ, Zhang JF (2009) Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium. J Hazard Mater 165:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Manefield M, Griffiths RI, Leigh MB, Fisher R, Whiteley AS (2005) Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environ Microbiol 7:715–722

    Article  CAS  PubMed  Google Scholar 

  • Park S, Yu J, Byun I, Cho S, Park T, Lee T (2011) Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions. Bioresour Technol 102:7265–7271

    Article  CAS  PubMed  Google Scholar 

  • Paul L, Herrmann S, Koch CB, Philips J, Smolders E (2013) Inhibition of microbial trichloroethylene dechorination by Fe(III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1. Water Res 47:2543–2554

    Article  CAS  PubMed  Google Scholar 

  • Puyol D, Monsalvo VM, Sanchis S, Sanz JL, Mohedano AF, Rodriguez JJ (2015) Comparison of bioaugmented EGSB and GAC-FBB reactors and their combination with aerobic SBR for the abatement of chlorophenols. Chem Eng J 259:277–285

    Article  CAS  Google Scholar 

  • Scheutz C, Durant ND, Broholm MM (2014) Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites. Biodegradation 25:459–478

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shokrollahzadeh S, Azizmohseni F, Golmohammad F, Shokouhi H, Khademhaghighat F (2008) Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran. Bioresour Technol 99:6127–6133

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218–227

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yin N, Yang G, Zhong ZX, Xing WH (2011) Separation of ammonium salts from coking wastewater with nanofiltration combined with diafiltration. Desalination 268:233–237

    Article  CAS  Google Scholar 

  • Zhao C, Zhang Y, Li X, Wen D, Tang X (2011) Biodegradation of carbazole by the seven Pseudomonas sp. strains and their denitrification potential. J Hazard Mater 190:253–259

    Article  CAS  PubMed  Google Scholar 

  • Zhou NA, Lutovsky AC, Andaker GL, Gough HL, Ferguson JF (2013) Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment. Biodegradation 24:813–827

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Tian J, Chen L (2012) Phenol degradation by isolated bacterial strains: kinetics study and application in coking wastewater treatment. J Chem Technol Biotechnol 87:123–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 51308319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lujun Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Liu, R., Liu, C. et al. Bioaugmentation with isolated strains for the removal of toxic and refractory organics from coking wastewater in a membrane bioreactor. Biodegradation 26, 465–474 (2015). https://doi.org/10.1007/s10532-015-9748-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9748-z

Keywords

Navigation