Skip to main content
Log in

Spectral sensitivity of dipteran retinula cells

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Dipteran rhabdomeres are dielectric waveguides. Using dielectric waveguide theory an expression for the spectral sensitivity of retinula cells is derived. The spectral sensitivity of a retinula cell, S (A), depends strongly on the physical properties of the rhabdomere (diameter and refractive index) in addition to the spectral absorption of the photopigments. By correlating theory with existing experimental results we conclude that:

  1. 1.

    The effect of containing photopigment within a rhabdom of small diameter is (a) to shift the visible absorption peak to lower wavelengths and (b) to increase the UV peak absorption relative to the visible peak. The smaller the diameter of the rhabdom the greater the effect (Fig. 8 and 9).

  2. 2.

    The theoretical results (Fig. 10) for the spectral sensitivity,S (λ), of fly retinula cells are consistent with the single cell electrophysiology of Autrum and Burkhardt (1961) and Burkhardt (1962). The blue receptor type recorded by single cell electrophysiology is identified with rhabdomere number 7. The blue receptor is different from the green receptor type (rhabdomeres 1–6) because it has a smaller diameter not because of a different photopigment. The enormous measured UV sensitivity of the blue receptor type is due mainly to the waveguide effects caused by the small diameter of rhabdomere 7. Nevertheless, we conclude that in addition to a rhodopsin-like visible photopigment a separate UV photopigment is present in each rhabdomere. The spectral sensitivity of the photopigments consistent with these findings is shown as the dotted line in Fig. 10.

  3. 3.

    Rhabdomere 7 acts like a UV colour filter for rhabdomere 8, since it is more distal and has a large UV absorption. Thus the yellow-green receptor type measured by single cell electrophysiology, which has a low UV sensitivity compared with the blue type, may be retinula cell 8.

  4. 4.

    Spectral sensitivity curves inferred by optomotor reactions cannot be identified with retinula cells 1–6 in isolation of cells 7 and 8 and vice versa. Micro-spectrophotometric determination ofS (λ) is subject to methodological errors which render its reliability suspect. In the author's opinion, the intracellular recordings of Autrum and Burkhardt (1961) and Burkhardt (1962) represent the correctS (λ) curves for fly retinula cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum, H., Burkhardt, D.: Spectral sensitivity of single visual cells. Nature (Lond.)190, 639 (1961).

    Google Scholar 

  • Born, M., Wolf, E.: Principles of optics, p. 161, 435. New York: Pergamon Press 1965.

    Google Scholar 

  • Boschek, C. B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly,Musca domestica. Z. Zellforsch.118, 369–409 (1971).

    Google Scholar 

  • Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol.16, 86–109 (1962).

    Google Scholar 

  • Burkhardt, D.: Colour discrimination in insects. Advanc. Insect Physiol.2, 131–173 (1964).

    Google Scholar 

  • Dartnall, H. J. A.: In: The eye (edited by H. Davson), vol. 2, chapt. 17. London: Academic Press 1962.

    Google Scholar 

  • Eckert, H.: Die spektrale Empfindlichkeit der Rezeptorsysteme im Komplexauge vonMusca domestica L. Kybernetik9, 145–151 (1971).

    Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Etude optiquein vivo des éléments photorécepteurs dans l'oeil composé deDrosophila. Kybernetik81, 1–13 (1971).

    Google Scholar 

  • Goldsmith, T. H.: The colour vision in insects. In: Light and life, W. D. McElroy and B. Glass, eds. Baltimore: John Hopkins Press 1961.

    Google Scholar 

  • Kirschfeld, K.: In: Processing of optical data by organisms and machines (edited by W. Eeichardt), p. 116–126; 144–163. London: Academic Press 1969.

    Google Scholar 

  • Langer, H., Thorell, B.: In: The functional organisation of the eye (edited by C. G. Bernhard). London: Pergamon Press 1966a.

    Google Scholar 

  • Langer, H., Thorell, B.: Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell Bes.41, 673–677 (1966b).

    Google Scholar 

  • Liebman, P. A.: Microspectrophotometry of photoreceptbrs. In: Handbook of sensory physiology, vol. VII (edited by H. J. Dartnall). Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • McCann, D., Arnett, D. W.: Spectral and polarisation sensitivity of the dipteran visual system. J. gen. Physiol.59, 534–558 (1972).

    Google Scholar 

  • Melamed, J., Trujillo-Cenóz, O.: The fine structure of the central cells in the ommatidia of Diptera. J. Ultrastruct. Res.21, 313–334 (1968).

    Google Scholar 

  • Menzel, R.: Colour Receptors in insects. In: The compound eye and vision of insects, ed. G. A. Horridge. Oxford: University Press 1973.

    Google Scholar 

  • Seitz, G.: Der Strahlengang im Appositionsauge vonCalliphora erythrocephala. Z. Vergl. Physiol.59, 205–231 (1968).

    Google Scholar 

  • Snitzer, E.: Cylindrical dielectric waveguide modes. J. opt. Soc. Amer.51, 491–498 (1961).

    Google Scholar 

  • Snyder, A. W.: Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide. IEEE trans. on Microwave theory and techniques17, 1130–1138 (1969a).

    Google Scholar 

  • Snyder, A. W.: Excitation and scattering of modes on a dielectric or optical fiber. IEEE trans. on Microwave theory and techniques17, 1138–1144 (1969b).

    Google Scholar 

  • Snyder, A. W.: Power loss on optical fibers. Proc. IEEE60, 757–758 (1972).

    Google Scholar 

  • Snyder, A. W.: Optical properties of invertebrate photoreceptors. In: The compound eye and vision of insects, ed. G. A. Horridge. Oxford: University Press 1973a.

    Google Scholar 

  • Snyder, A. W.: Polarization sensitivity of individual retinula cells. J. comp. Physiol.83, 331–360 (1973b).

    Google Scholar 

  • Snyder, A. W., Miller, W. H.: Fly colour vision. Vision Res.12, 1389–1396 (1972).

    Google Scholar 

  • Snyder, A. W., Pask, C.: Light absorption in the bee photoreceptor. J. opt. Soc. Amer.62, 998–1008 (1972).

    Google Scholar 

  • Snyder, A. W., Pask, C.: Absorption in conical optical fibers. J. opt. Soc. Amer. in press (1973).

  • Snyder, A. W., Richmond, P.: Effect of anomalous dispersion on visual photopigments. J. opt. Soc. Amer.62, 1278–1285 (1972).

    Google Scholar 

  • Snyder, A. W., Richmond, P.: Anomalous dispersion in visual photoreceptors. Vision Res.12, 511–515 (1973).

    Google Scholar 

  • Trujillo-Cenóz, O., Melamed, J.: In: The functional organisation of the compound eye (edited by C. G. Bernhard). London: Pergamon Press 1966.

    Google Scholar 

  • Wada, S.: Ein spezieller Rhabdomerentyp im Fliegenauge. Experientia27, 1237–1238 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, A.W., Pask, C. Spectral sensitivity of dipteran retinula cells. J. Comp. Physiol. 84, 59–76 (1973). https://doi.org/10.1007/BF00694147

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694147

Keywords

Navigation