Skip to main content
Log in

Topographical differences in the vascular permeability of the peripheral nervous system

  • Original Investigations
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

A comparative study was made on the permeability of blood vessels to serum albumin in spinal nerve roots, dorsal root ganglions and peripheral nerves of the rat. Differences in vascular permeability were demonstrated by fluorescence microscopic tracing of intravenously injected albumin labelled with fluoresceinisothiocyanate (FLA) or with Evans blue (EBA). The main findings were as follows:

  1. 1.

    Extramedullary parts of dorsal and ventral spinal nerve roots presented fluorescent albumin both in the walls of blood vessels and in the interstices between the nerve fibres, from the cord to the junction with the peripheral nerve.

  2. 2.

    Dorsal root ganglions displayed a rich accumulation of fluorescent albumin in and outside the walls of blood vessels in the capsule and in the endoneurium. In addition, large amounts of albumin were detected in the cortex, filling out the spaces between adjacent neurons. EBA was also traced in satellite cells and occasionally in neurons.

  3. 3.

    The endoneurium of peripheral nerves presented fluorescent albumin only in the lumen of the blood vessels, the remaining parts of the nerve fasciculi being devoid of fluorescence. The epineurium and perineurium, on the other hand, contained large amounts of fluorescent albumin both in and outside the blood vessels.

Thus, endoneurial blood vessels at different levels of the peripheral nervous system of the rat differ in their permeability, as do blood vessels in the endoneurium, the perineurium and the epineurium of peripheral nerves.

Zusammenfassung

Es wurden Vergleichsuntersuchungen über die Permeabilität der Gefäße für Serumalbumin in den Spinalnervenwurzeln, im Hinterwurzelganglion und in den peripheren Nerven der Ratte durchgefürht. Unterschiede in der Gefäßpermeabilität wurden durch fluorescenzmikroskopischen Nachweis von i.v. injiziertem, mit Fluoresceinisothiocyanat (FLA) oder Evans blue (EBA) gekoppeltem Humanalbumin demonstriert. Die wesentlichen Befunde waren:

  1. 1.

    Die extramedullären Wurzelabschnitte zwischen dem Rückenmark und dem Übergang in den peripheren Nerven ließen fluorescierendes Albumin in den Gefäßwänden und im Interstitium zwischen den Nervenfasern erkennen.

  2. 2.

    Die Hinterwurzelganglien zeigten starke Anreicherung von fluorescierendem Albumin inner- und außerhalb der Gefäßwände in der Kapsel und im Endoneurium. Daneben wurden große Albuminmengen im Cortex gefunden, welche die Räume zwischen den benachbarten Neuronen ausfüllten. EBA wurde auch in Satellitenzellen sowie gelegentlich in Neuronen nachgewiesen.

  3. 3.

    Das Endoneurium peripherer Nerven zeigte fluorescierendes Albumin lediglich im Gefäßlumen, während die übrigen Abschnitte der Nervenstränge frei von fluorescierendem Material waren. Andererseits zeigten Epi- und Perineurium reichlich fluorescierendes Albumin inner- und außerhalb der Gefäße.

Diese Befunde weisen darauf hin, daß die endoneuralen Blutgefäße der Ratte in verschiedenen Abschnitten des peripheren Nervensystems Unterschiede ihrer Permeabilität aufweisen. Gleiches gilt auch für die Gefäße im Endo-, Peri- und Epineurium der peripheren Nerven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamkiewics, A.: Zum Blutgefäßapparat der Ganglienzelle. Anat. Anz.17, 44–48 (1900).

    Google Scholar 

  • Andres, K. H.: Untersuchungen über den Feinbau von Spinalganglien. Z. Zellforsch.55, 1–48 (1961).

    Google Scholar 

  • Bakay, L., andJ. C. Lee: Cerebral edema. Springfield, Ill.: Ch. C. Thomas 1965.

    Google Scholar 

  • Bergmann, L., andL. Alexander: Vascular supply of the spinal ganglia. Arch. Neurol. Psychiat. (Chic.)46, 761–782 (1941).

    Google Scholar 

  • Brandt, P. W.: A study of the mechanism of pinocytosis. Exp. Cell Res.15, 300–304 (1958).

    Google Scholar 

  • Brierley, J. B.: The sensory ganglia: Recent anatomical, physiological and pathological contributions. Acta psychiat. scand.30, 553–576 (1955).

    Google Scholar 

  • Davsson, H.: In: Handbook of Physiology, pp. 1761–1768. Ed.J. Field, H. W. Magoun, andV. E. Hall. Baltimore: Williams & Wilkins Co. 1960.

    Google Scholar 

  • Dobbing, J.: Blood-brain barrier. Physiol. Rev.41, 130–188 (1961).

    Google Scholar 

  • Doinikow, B.: Histologische und histopathologische Untersuchungen am peripheren Nerven-System mittels vitaler Färbung. Folia neuro-biol. (Lpz.)7, 731–749 (1913).

    Google Scholar 

  • Greenfield's Neuropathology, 2nd ed., edit. byW. Blackwood, H. McMenemy, A. Meyer, R. W. Norman, andD. S. Russel: London. Edward Arnold Ltd. 1963.

    Google Scholar 

  • Haymaker, W., andJ. W. Kernohan: The Landry-Guillain-Barré Syndrome. Medicine (Baltimore)28, 59–141 (1949).

    Google Scholar 

  • Holtzer, H., andS. Holtzer: The in vitro uptake of fluorescein labelled plasma proteins. 1. Mature cells. C. R. Lab. Carlsberg31, 373–413 (1960).

    Google Scholar 

  • Holter, H.: Pinocytosis. Int. Rev. Cytol.8, 481–504 (1959).

    Google Scholar 

  • Klatzo, I.: Neuropathological aspects of brain edema. J. Neuropath. exp. Neurol.26, 1–14 (1967).

    Google Scholar 

  • —,J. Miquel, C. Tobias, andW. Haymaker: Effects of alpha particle radiation on the rat brain, including vascular permeability and glycogen studies. J. Neuropath. exp. Neurol.20, 459–483 (1961).

    Google Scholar 

  • —— andR. Otenasek: The application of fluorescein labelled serum proteins (FLSP) to the study of vascular permeability in the brain. Acta neuropath. (Berl.)2, 144–160 (1962).

    Google Scholar 

  • —,W. Wisniewski, andD. Smith: Observations on penetration of serum proteins into the central nervous system. Progr. Brain Res.15, 73–88 (1965).

    Google Scholar 

  • —, andO. Steinwall: Oberservation on cerebrospinal fluid pathways and behaviour of the bloodbrain barrier in sharks. Acta neuropath. (Berl.)5, 161–175 (1965).

    Google Scholar 

  • Lajtha, A.: In: Neurochemistry, pp. 399–430. Ed.K. A. C. Elliot, I. H. Page, andJ. H. Quastel, 2nd ed. Springfield, Ill.: Ch. C. Thomas 1962.

    Google Scholar 

  • Mancini, R. E.: Connective tissue and serum proteins. Int. Rev. Cytol.14, 193–222 (1963).

    Google Scholar 

  • Olsson, Y.: Studies on vascular permeability in peripheral nerves. 1. Distribution of circulating fluorescent serum albumin in normal, crushed and sectioned peripheral nerve. Acta neuropath. (Berl.)7, 1–15 (1966a).

    Google Scholar 

  • —: Studies on vascular permeability in peripheral nerves. 2. Distribution of circulating fluorescent serum albumin in rat sciatic nerve after local injection of 5-hydroxytryptamine, histamine and Compound 48/80. Acta physiol. scand., Suppl.69, 284 (1966b).

    Google Scholar 

  • —: The effect of the histamine liberator, Compound 48/80 on mast cells in normal peripheral nerve. Acta path. microbiol. scand.68, 565–575 (1966c).

    Google Scholar 

  • —: The effect of the histamine liberator, Compound 48/80 on mast cells in sectioned peripheral nerve. Acta path. microbiol. scand.68, 575–584 (1966d).

    Google Scholar 

  • Rosenbluth, J., andS. L. Wissig: The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol.23, 307–325 (1964).

    Google Scholar 

  • Spatz, H.: Die Bedeutung der vitalen Färbung für die Lehre vom Stoffaustausch zwischen dem Zentralnervensystem und dem übrigen Körper. Arch. Psychiat. Nervenkr.101, 267–321 (1933/34).

    Google Scholar 

  • Steinwall, O., andI. Klatzo: Selective vulnerability of blood-brain barrier in chemically induced lesions. J. Neuropath. exp. Neurol.25, 542–559 (1966).

    Google Scholar 

  • Streicher, E., H. Wisniewski, andI. Klatzo: Resistance of immature brain to experimental cerebral oedema. Neurology (Minneap.)15, 833–836 (1965).

    Google Scholar 

  • Sunderland, S.: The connective tissues of peripheral nerves. Brain88, 841–854 (1965).

    Google Scholar 

  • Tower, D. P.: In: Properties of membranes and dieseases of the nervous system, pp. 1–40. New York: Springer 1962.

    Google Scholar 

  • Tschetschujeva, T.: Über die Speicherung von Trypanblau in Ganglien verschiedener Gebiete des Nervensystems. Z. ges. exp. Med.69, 208–219 (1929/30).

    Google Scholar 

  • Tschirgi, R. D.: In: Handbook of Physiology, Ed.J. Field, H. W. Magoun, andV. E. Hall, pp. 1865–1890. Baltimore: Williams & Wilkins 1960.

    Google Scholar 

  • Waksman, B. H.: Experimental study of diphteric polyneuritis in the rabbit and guinea pig. III. The blood nerve barrier in the rabbit. J. Neuropath. exp. Neurol.20, 35–77 (1961).

    Google Scholar 

  • Wright, S.: Applied Physiology. 9th ed. London-New York-Toronto: Oxford University Press 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, Y. Topographical differences in the vascular permeability of the peripheral nervous system. Acta Neuropathol 10, 26–33 (1968). https://doi.org/10.1007/BF00690507

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690507

Key-words

Navigation