Skip to main content
Log in

Assessment of chemotherapy-associated nephrotoxicity in children with cancer

  • Review
  • Nephrotoxicity Chemotherapy, Cancer, Children
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Summary

Assessment of the toxicity caused by chemotherapy in children with cancer has become more important as the number of long-term survivors has continued to increase. It is vital to monitor both acute life-threatening adverse effects and long-term toxicity that may impair the child's development and cause permanent morbidity. Renal damage may follow treatment with cytotoxic drugs, especially cisplatin or ifosfamide, and lead to glomerular, proximal tubular or distal tubular impairment or to any combination of these. Greater understanding of nephrotoxicity and of its prevention may enable the use of more intensive schedules or of higher doses of potentially nephrotoxic chemotherapy. However, the evaluation of cytotoxic drug-induced nephrotoxicity has frequently depended mainly on measurement of the plasma creatinine concentration, which may remain normal despite substantial glomerular impairment or severe tubular dysfunction. Detailed assessment of nephrotoxicity depends on an understanding of normal renal physiology and requires evaluation of all aspects of function. A comprehensive but simple investigatory protocol that enables assessment of the nature and severity of nephrotoxicity in children is described, which can be performed without admission to hospital.Glomerular function is assessed by measurement of the glomerular filtration rate from the plasma clearance of [51Cr]-ethylenediaminetetraacetic acid ([51Cr]-EDTA).Proximal nephron function is evaluated in three ways: by measurement of the concentration of calcium, magnesium, phosphate, glucose and urate in blood and urine along with calculations of their fractional excretion and of the renal threshold for phosphate; by determination of the excretion in urine of low-molecular-weight proteins (e.g. retinol-binding protein); and by investigation of urinary bicarbonate excretion in patients who are acidotic.Distal nephron function is initially investigated by examination of the concentration (osmolality) and acidification (pH) of an early morning sample of urine. Finally, a group of general investigations is performed, including quantitation of urinary excretion of renal tubular enzymes (e.g.N-acetylglucosaminidase) and measurement of blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson AS, Svenningsen NW (1974) DDAVP test for estimation of renal concentrating capacity in infants and children. Arch Dis Child 49: 654

    Google Scholar 

  2. Barrat TM (1974) Assessment of renal function in children. In: Apley J (ed) Modern trends in paediatrics vol. 4. Butterworth, London, pp 181–215

    Google Scholar 

  3. Barratt TM, McLaine PN, Soothill JF (1970) Albumin excretion as a measure of glomerular dysfunction in children. Arch Dis Child 45: 496

    Google Scholar 

  4. Bauer JH, Brooks CS, Burch RN (1982) Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 2: 337

    Google Scholar 

  5. Bellin SL, Selim M (1988) Cisplatin-induced hypomagnesemia with seizures: a case report and review of the literature. Gynecol Oncol 30: 104

    Google Scholar 

  6. Bernard A, Vyskocyl A, Mahieu P, Lauwerys R (1988) Effect of renal insufficiency on the concentration of free retinol-binding protein in urine and serum. Clin Chim Acta 171: 85

    Google Scholar 

  7. Bijvoet OLM (1969) Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin Sci 37: 23

    Google Scholar 

  8. Bitran JD, Desser RK, Billings AA, Kozloff MF, Shapiro CM (1982) Acute nephrotoxicity followingcis-dichlorodiammine-platinum. Cancer 49: 1784

    Google Scholar 

  9. Brenner BM, Dworkin LD, Ichikawa I (1986) Glomerular ultrafiltration. In: Brenner BM, Rector FC Jr (eds) The kidney, 3rd edn. W. B. Saunders, Philadelphia, pp 124–144

    Google Scholar 

  10. Brenton DP (1985) Tubular function and its disturbance in disease. In: Marsh FP (ed) Postgraduate nephrology, 1st edn. William Heinemann, London, pp 180–214

    Google Scholar 

  11. Brodehl J, Gellison K, Weber HP (1982) Postnatal development of tubular phosphate reabsorption. Clin Nephrol 17: 163

    Google Scholar 

  12. Brodehl J, Krause A, Hoyer PF (1988) Assessment of maximal tubular phosphate reabsorption: comparison of direct measurement with the nomogram of Bijvoet. Pediatr Nephrol 2: 183

    Google Scholar 

  13. Caron HN, Abeling N, Kraker J de, Gennip A van, Voute PA (1989) Hyperaminoaciduria, a functional index of ifosfamide-induced renal tubular dysfunction (abstract 184) Med Pediatr Oncol 17: 326

    Google Scholar 

  14. Chantler C, Barratt TM (1972) Estimation of glomerular filtration rate from plasma clearance of 51-chromium edetic acid. Arch Dis Child 47: 613

    Google Scholar 

  15. Chantler C, Garnett ES, Parsons V, Veall N (1969) Glomerular filtration rate measurement in man by the single injection method using [51Cr]-EDTA. Clin Sci 37: 169

    Google Scholar 

  16. Clayton BE, Jenkins P, Round JM (1980) Paediatric chemical pathology: clinical tests and reference ranges. Blackwell Scientific, Oxford

    Google Scholar 

  17. Cohn SL, Lincoln ST, Rosen ST (1986) Present status of serum tumor markers in diagnosis, prognosis, and evaluation of therapy. Cancer Invest 4: 305

    Google Scholar 

  18. Craft AW, Pearson ADJ (1989) Three decades of chemotherapy for childhood cancer: from cure àt any cost' to cure àt least cost'. Cancer Surv 8: 605

    Google Scholar 

  19. Daugaard G, Abildgaard U (1989) Cisplatin nephrotoxicity. Cancer Chemother Pharmacol 25: 1

    Google Scholar 

  20. DeFronzo RA, Thier SO (1986) Inherited disorders of renal tubule function. In: Brenner BM, Rector FC Jr (eds) The kidney, 3rd edn. W. B. Saunders, Philadelphia, pp 1297–1339

    Google Scholar 

  21. DeFronzo RA, Abeloff M, Braine H, Humphrey RL, Davis PJ (1974) Renal dysfunction after treatment with isophosphamide (NSC-109724). Cancer Chemother Rep 58: 375

    Google Scholar 

  22. Donaldson MDC, Chambers RE, Woolridge MW, Whicher JT (1989) Stability of alpha1-microglobulin, beta2-microglobulin and retinol binding protein in urine. Clin Chim Acta 179: 73

    Google Scholar 

  23. Edelmann CM Jr, Barnett HL, Stark H, Boichis H, Soriano JR (1967) A standardised test of renal concentrating capacity in children. Am J Dis Child 114: 639

    Google Scholar 

  24. Edelmann CM Jr, Boichis H, Soriano JR, Stark H (1967) The renal response of children to acute ammonium chloride acidosis. Pediatr Res 1: 452

    Google Scholar 

  25. Edelmann CM Jr, Soriano JR, Boichis H, Gruskin AB, Acosta MI (1967) Renal bicarbonate reabsorption and hydrogen ion excretion in normal infants. J Clin Invest 46: 1309

    Google Scholar 

  26. Fielding BA (1984) Albumin and β2-microglobulin excretion in normal and diabetic children. M Phil Thesis, Manchester Polytechnic

  27. Fillastre JP, Viotte G, Morin JP, Moulin B (1988) Nephrotoxicity of antitumoral agents. Adv Nephrol 17: 175

    Google Scholar 

  28. Forman DT (1982) Beta-2 microglobulin—an immunogenetic marker of inflammatory and malignant origin. Ann Clin Lab Sci 12: 447

    Google Scholar 

  29. Garnick MB, Mayer RJ, Abelson HT (1988) Acute renal failure associated with cancer treatment. In: Brenner BM, Lazarus JM (eds) Acute renal failure, 2nd edn. Churchill Livingstone, New York, pp 621–657

    Google Scholar 

  30. Gomez Campdera FJ, Gonzalez P, Carrillo A, Estelles MC, Rengel M (1986) Cisplatin nephrotoxicity: symptomatic hypomagnesemia and renal failure. Int J Pediatr Nephrol 7: 151

    Google Scholar 

  31. Goren MP, Wright RK, Horowitz ME (1986) Increased levels of urinary adenosine deaminase binding protein in children treated with cisplatin or methotrexate. Clin Chim Acta 160: 157

    Google Scholar 

  32. Goren MP, Wright RK, Horowitz ME, Pratt CB (1987) Ifosfamide-induced subclinical tubular nephrotoxicity despite mesna. Cancer Treat Rep 71: 127

    Google Scholar 

  33. Grantham JJ, Chonko AM (1986) Renal handling of organic anions and cations; metabolism and excretion of uric acid. In: Brenner BM, Rector FC Jr (eds) The kidney, 3rd edn. W. B. Saunders, Philadelphia, pp 663–700

    Google Scholar 

  34. Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26: 101

    Google Scholar 

  35. Halperin ML, Richardson RMA, Bear RA, Magner PO, Kamel K, Ethier J (1988) Urine ammonium: the key to the diagnosis of distal renal tubular acidosis. Nephron 50: 1

    Google Scholar 

  36. Hardaker WT Jr, Stone RA, McCoy R (1974) Platinum nephrotoxicity. Cancer 34: 1030

    Google Scholar 

  37. Harmon WE, Cohen HJ, Schneeberger EE, Grupe WE (1979) Chronic renal failure in children treated with methyl CCNU. N Engl J Med 300: 1200

    Google Scholar 

  38. Harrell RM, Sibley R, Vogelzang NJ (1982) Renal vascular lesions after chemotherapy with vinblastine, bleomycin, and cisplatin. Am J Med 73: 429

    Google Scholar 

  39. Harris AS (1989) Clinical experience with desmopressin: efficacy and safety in central diabetes insipidus and other conditions. J Pediatr 114: 711

    Google Scholar 

  40. Heney D, Lewis IJ, Bailey CC (1989) Acute ifosfamide-induced tubular toxicity. Lancet II: 103

    Google Scholar 

  41. Hill JB, Blachley JD, Trotter M (1978) Hypomagnesemia, hypocalcemia, and hypokalemia with cis-platinum treatment (abstract). Clin Res 26: 780

    Google Scholar 

  42. Husband DJ, Watkin SW (1988) Fatal hypokalaemia associated with ifosfamide/mesna chemotherapy. Lancet 1: 116

    Google Scholar 

  43. Jacobs C, Sikic BI, Halsey J, Goshland M, Kaubisch S, Coleman CN (1989) Protection of cisplatin nephrotoxicity with probenecid: a phase I trial (abstract 302). Proc Am Soc Clin Oncol 8: 78

    Google Scholar 

  44. Jaffe N, Traggis D (1975) Toxicity of high-dose methotrexate (NSC-740) and citrovorum factor (NSC-3590) in osteogenic sarcoma. Cancer Chemother Rep 6: 31

    Google Scholar 

  45. Klahr S, Tripathy K (1966) Evaluation of renal function in malnutrition. Arch Intern Med 118: 322

    Google Scholar 

  46. Kletzal M, Jaffe N (1981) Systemic hypertension. A complication of intra-arterialcis-diamminedichloroplatinum(II) infusion. Cancer 47: 245

    Google Scholar 

  47. Koopman MG, Krediet RT, Zuyderhoudt FMJ, Moor EAM de, Arisz L (1987) Circadian rhythm of urinary β2 microglobulin excretion in patients with a nephrotic syndrome. Nephron 45: 140

    Google Scholar 

  48. Kreusser W, Herrmann R, Tschope W, Ritz E (1982) Nephrological complications of cancer therapy. Contrib Nephrol 33: 223

    Google Scholar 

  49. Lammers PJ, White L, Ettinger LJ (1984)cis-Platinum-inducedrenal sodium wasting. Med Pediatr Oncol 12: 343

    Google Scholar 

  50. Link DA, Fosburg MT, Ingelfinger JR, Tobias JS, Jaffe N (1976) Renal toxicity of high-dose methotrexate (abstract 923) Pediatr Res 10: 455

    Google Scholar 

  51. Maruhn D, Strozyk K, Gielow L, Bock KD (1977) Diurnal variations of urinary enzyme excretion. Clin Chim Acta 75: 427

    Google Scholar 

  52. Massry SG, Friedler RM, Coburn JW (1973) Excretion of phosphate and calcium. Physiology of their renal handling and relation to clinical medicine. Arch Intern Med 131: 828

    Google Scholar 

  53. Meites S (ed) (1989) Pediatric clinical chemistry: reference (normal) values, 3rd edn. AACC Press, Washington, D. C.

    Google Scholar 

  54. Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47: 207

    Google Scholar 

  55. Monnens L, Smulders Y, Lier H van, Boo T de (1981) DDAVP test for assessment of renal concentrating capacity in infants and children. Nephron 29: 151

    Google Scholar 

  56. Morgan DB (1982) Assessment of renal tubular function and damage and their clinical significance. Ann Clin Biochem 19: 307

    Google Scholar 

  57. Morris-Jones PH, Craft AW (1990) Childhood cancer: cure at what cost? Arch Dis Child 65: 638

    Google Scholar 

  58. Offerman JJG, Meijer S, Sleijfer DT, Mulder NH, Donker AJM, Koops HS, Hem GK van der (1984) Acute effects ofcis-diamminedichloroplatinum (CDDP) on renal function. Cancer Chemother Pharmacol 12: 36

    Google Scholar 

  59. Peterson PA, Evrin PE, Berggard I (1969) Differentiation of glomerular, tubular, and normal proteinuria: determinations of urinary excretion of β2-microglobulin, albumin, and total protein. J Clin Invest 48: 1189

    Google Scholar 

  60. Polacek E, Vocel J, Neugebauerova L, Sebkova M, Vechetova E (1965) The osmotic concentrating ability in healthy infants and children. Arch Dis Child 40: 291

    Google Scholar 

  61. Price RG (1982) Urinary enzymes, nephrotoxicity and renal disease. Toxicology 23: 99

    Google Scholar 

  62. Quamme GA (1986) Renal handling of magnesium: drug and hormone interactions. Magnesium 5: 248

    Google Scholar 

  63. Ries F, Klastersky J (1986) Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis 8: 368

    Google Scholar 

  64. Rieselbach RE, Garnick MB (1988) Renal diseases induced by antineoplastic agents. In: Schrier RW, Gottschalk CW (eds) Diseases of the kidney, vol II, 4th edn. Little, Brown and Company. Boston, pp 1275–1299

    Google Scholar 

  65. Rodriguez-Soriano J, Vallo A (1988) Renal tubular hyperkalaemia in childhood. Pediatr Nephrol 2: 498

    Google Scholar 

  66. Rodriguez-Soriano J, Vallo A (1990) Renal tubular acidosis. Pediatr nephrol 4: 268

    Google Scholar 

  67. Rowe DJF, Anthony F, Polak A, Shaw K, Ward CD, Watts GF (1987) Retinol binding protein as a small molecular weight marker of renal tubular function in diabetes mellitus. Ann Clin Biochem 24: 477

    Google Scholar 

  68. Sangster G, Kaye SB, Calman KC, Dalton JF (1984) Failure of 2-mercaptoethane sulphonate sodium (mesna) to protect against ifosfamide nephrotoxicity. Eur J Cancer Clin Oncol 20: 435

    Google Scholar 

  69. Schardijn GHC, Statius van Eps LW (1987) 91-4: its significance in the evaluation of renal function. Kidney Int 32: 635

    Google Scholar 

  70. Schilsky RL, Anderson T (1979) Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin. Ann Intern Med 90: 929

    Google Scholar 

  71. Sheldon W, Welch RJ, Bonham JR, Pearson ADJ, Craft AW (1987) Hypomagnesaemia following treatment of childhood cancer with cisplatinum. Ann Clin Biochem 24 [Suppl 1]: 85

    Google Scholar 

  72. Skinner R, Pearson ADJ, Price L, Cunningham K, Craft AW (1989) Hypophosphataemic rickets after ifosfamide treatment in children. Br Med J [Clin Res] 298: 1560

    Google Scholar 

  73. Skinner R, Pearson ADJ, Price L, Coulthard MG, Craft AW (1990) Nephrotoxicity after ifosfamide. Arch Dis Child 65: 732

    Google Scholar 

  74. Slavin RE, Dias MA, Saral R (1978) Cytosine arabinoside induced gastrointestinal toxic alterations in sequential chemotherapeutic protocols. Cancer 42: 1747

    Google Scholar 

  75. Sleijfer DT, Smith EF, Meijer S, Mulder NH, Postmus PE (1989) Acute and cumulative effects of carboplatin on renal function. Br J Cancer 60: 116

    Google Scholar 

  76. Smeitink J, Verreussel M, Schroder C, Lippens R (1988) Nephrotoxicity associated with ifosfamide. Eur J Pediatr 148: 164

    Google Scholar 

  77. Stark H, Eisenstein B, Tieder M, Rachmel A, Alpert G (1986) Direct measurement of TP/GFR: a simple and reliable parameter of renal phosphate handling. Nephron 44: 125

    Google Scholar 

  78. Stiller CA (1988) Centralisation of treatment and survival rates for cancer. Arch Dis Child 63: 23

    Google Scholar 

  79. Sutton RAL, Dirks JH (1981) Renal handling of calcium, phosphate, and magnesium. In: Brenner BM, Rector FC Jr (eds) The kidney, 2nd edn. W. B. Saunders, Philadelphia, pp 551–618

    Google Scholar 

  80. Swiet M de, Dillon MJ, Littler W, O'Brien E, Padfield PL, Petrie JC (1989) Measurement of blood pressure in children. Recommendations of a working party of the British Hypertension Society. Br Med J [Clin Res] 299: 497

    Google Scholar 

  81. Weiss RB, Posada JG Jr, Kramer RA, Boyd MR (1983) Nephrotoxicity of semustine. Cancer Treat Rep 67: 1105

    Google Scholar 

  82. Womer RB, Pritchard J, Barratt TM (1985) Renal toxicity of cisplatin in children. J Pediatr 106: 659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, R., Pearson, A.D.J., Coulthard, M.G. et al. Assessment of chemotherapy-associated nephrotoxicity in children with cancer. Cancer Chemother. Pharmacol. 28, 81–92 (1991). https://doi.org/10.1007/BF00689694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689694

Keywords

Navigation