Skip to main content

Kidney Disease in Childhood Cancer Survivors

  • Chapter
  • First Online:
Late Treatment Effects and Cancer Survivor Care in the Young
  • 490 Accesses

Abstract

Chronic glomerular and tubular nephrotoxicity has been reported in up to 50% and 25%, respectively, of children and adolescents treated with ifosfamide and up to 60% and 30% of those given cisplatin. Up to 35% of children have proteinuria and microalbuminuria, implying chronic glomerular damage, after unilateral nephrectomy for a renal tumour. We are still learning about nephrotoxicity due to the new targeted anticancer drugs. Overall, childhood cancer survivors have nine times greater risk of developing renal failure than their siblings. Such chronic nephrotoxicity may have multiple causes including certain chemotherapy agents (especially ifosfamide and platinum agents), radiotherapy to the kidneys, renal surgery, supportive care drugs and tumour-related factors. These cause a wide range of chronic glomerular and tubular toxicity, often with potentially severe clinical sequelae. Although many risk factors for developing nephrotoxicity, mostly patient and treatment-related, have been described, they do not predict all children who subsequently develop chronic renal damage. This suggests that other factors may be involved, such as genetic polymorphisms influencing drug metabolism. Further research is necessary to enable prediction or early detection of nephrotoxicity, whilst greater understanding of the pathogenesis of nephrotoxicity is needed to allow us to prevent its occurrence in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knijnenburg SL, et al. Renal dysfunction and elevated blood pressure in long-term childhood cancer survivors. Clin J Am Soc Nephrol. 2012;7(9):1416–27.

    Article  Google Scholar 

  2. Mulder RL, et al. Glomerular function time trends in long-term survivors of childhood cancer: a longitudinal study. Cancer Epidemiol Biomarkers Prev. 2013;22(10):1736–46.

    Article  CAS  Google Scholar 

  3. Oberlin O, et al. Long-term evaluation of Ifosfamide-related nephrotoxicity in children. J Clin Oncol. 2009;27(32):5350–5.

    Article  CAS  Google Scholar 

  4. Skinner R, et al. Glomerular toxicity persists 10 years after ifosfamide treatment in childhood and is not predictable by age or dose. Pediatr Blood Cancer. 2010;54(7):983–9.

    Article  Google Scholar 

  5. Dawson LA, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S108–15.

    Article  Google Scholar 

  6. Donckerwolcke RM, Coppes MJ. Adaptation of renal function after unilateral nephrectomy in children with renal tumors. Pediatr Nephrol (Berlin, Germany). 2001;16(7):568–74.

    Article  CAS  Google Scholar 

  7. Schiavetti A, et al. Long-term renal function in unilateral non-syndromic renal tumor survivors treated according to International Society of Pediatric Oncology protocols. Pediatr Blood Cancer. 2015;62(9):1637–44.

    Article  Google Scholar 

  8. Oeffinger KC, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–82.

    Article  CAS  Google Scholar 

  9. Craft AW, Pearson AD. Three decades of chemotherapy for childhood cancer: from cure ‘at any cost’ to cure ‘at least cost’. Cancer Surv. 1989;8(3):605–29.

    CAS  Google Scholar 

  10. Willemse PH, et al. Severe renal failure following high-dose ifosfamide and mesna. Cancer Chemother Pharmacol. 1989;23(5):329–30.

    Article  CAS  Google Scholar 

  11. Friedlaender MM, et al. End-stage renal interstitial fibrosis in an adult ten years after ifosfamide therapy. Am J Nephrol. 1998;18(2):131–3.

    Article  CAS  Google Scholar 

  12. Loebstein R, et al. Risk factors for long-term outcome of ifosfamide-induced nephrotoxicity in children. J Clin Pharmacol. 1999;39(5):454–61.

    CAS  Google Scholar 

  13. Prasad VK, et al. Progressive glomerular toxicity of ifosfamide in children. Med Pediatr Oncol. 1996;27(3):149–55.

    Article  CAS  Google Scholar 

  14. Skinner R, et al. Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children’s Cancer Study Group. Br J Cancer. 2000;82(10):1636–45.

    Article  CAS  Google Scholar 

  15. Skinner R, et al. Risk factors for ifosfamide nephrotoxicity in children. Lancet. 1996;348(9027):578–80.

    Article  CAS  Google Scholar 

  16. Church DN, et al. Osteomalacia as a late metabolic complication of Ifosfamide chemotherapy in young adults: illustrative cases and review of the literature. Sarcoma. 2007;2007:91586.

    Article  CAS  Google Scholar 

  17. Farry JK, et al. Long term renal toxicity of ifosfamide in adult patients--5 year data. Eur J Cancer. 2012;48(9):1326–31.

    Article  CAS  Google Scholar 

  18. Stohr W, et al. Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer. 2007;48(4):447–52.

    Article  CAS  Google Scholar 

  19. Raney B, et al. Renal toxicity of ifosfamide in pilot regimens of the intergroup rhabdomyosarcoma study for patients with gross residual tumor. Am J Pediatr Hematol Oncol. 1994;16(4):286–95.

    CAS  Google Scholar 

  20. Rossi R, et al. Unilateral nephrectomy and cisplatin as risk factors of ifosfamide-induced nephrotoxicity: analysis of 120 patients. J Clin Oncol. 1994;12(1):159–65.

    Article  CAS  Google Scholar 

  21. Shore R, et al. Iphosphamide-induced nephrotoxicity in children. Pediatr Nephrol (Berlin, Germany). 1992;6(2):162–5.

    Article  CAS  Google Scholar 

  22. Boddy AV, et al. Ifosfamide nephrotoxicity: limited influence of metabolism and mode of administration during repeated therapy in paediatrics. Eur J Cancer. 1996;32a(7):1179–84.

    Article  CAS  Google Scholar 

  23. Nissim I, et al. Ifosfamide-induced nephrotoxicity: mechanism and prevention. Cancer Res. 2006;66(15):7824–31.

    Article  CAS  Google Scholar 

  24. Skinner R, et al. Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol. 1993;11(1):173–90.

    Article  CAS  Google Scholar 

  25. Brock PR, et al. Partial reversibility of cisplatin nephrotoxicity in children. J Pediatr. 1991;118(4 Pt 1):531–4.

    Article  CAS  Google Scholar 

  26. Skinner R, et al. Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br J Cancer. 1998;77(10):1677–82.

    Article  CAS  Google Scholar 

  27. Womer RB, et al. Renal toxicity of cisplatin in children. J Pediatr. 1985;106(4):659–63.

    Article  CAS  Google Scholar 

  28. Goren MP. Cisplatin nephrotoxicity affects magnesium and calcium metabolism. Med Pediatr Oncol. 2003;41(3):186–9.

    Article  Google Scholar 

  29. Bianchetti MG, et al. Chronic renal magnesium loss, hypocalciuria and mild hypokalaemic metabolic alkalosis after cisplatin. Pediatr Nephrol (Berlin, Germany). 1990;4(3):219–22.

    Article  CAS  Google Scholar 

  30. Jimenez-Triana CA, et al. Cisplatin nephrotoxicity and longitudinal growth in children with solid tumors: a retrospective cohort study. Medicine. 2015;94(34):e1413.

    Article  CAS  Google Scholar 

  31. Latcha S, et al. Long-term renal outcomes after cisplatin treatment. Clin J Am Soc Nephrol. 2016;11(7):1173–9.

    Article  CAS  Google Scholar 

  32. Harrell RM, et al. Renal vascular lesions after chemotherapy with vinblastine, bleomycin, and cisplatin. Am J Med. 1982;73(3):429–33.

    Article  CAS  Google Scholar 

  33. English MW, et al. Dose-related nephrotoxicity of carboplatin in children. Br J Cancer. 1999;81(2):336–41.

    Article  CAS  Google Scholar 

  34. Stohr W, et al. Nephrotoxicity of cisplatin and carboplatin in sarcoma patients: a report from the late effects surveillance system. Pediatr Blood Cancer. 2007;48(2):140–7.

    Article  CAS  Google Scholar 

  35. Skinner R, et al. Persistent nephrotoxicity during 10-year follow-up after cisplatin or carboplatin treatment in childhood: relevance of age and dose as risk factors. Eur J Cancer. 2009;45(18):3213–9.

    Article  CAS  Google Scholar 

  36. Daugaard G, et al. Renal tubular function in patients treated with high-dose cisplatin. Clin Pharmacol Ther. 1988;44(2):164–72.

    Article  CAS  Google Scholar 

  37. Daugaard G, et al. Effects of cisplatin on different measures of glomerular function in the human kidney with special emphasis on high-dose. Cancer Chemother Pharmacol. 1988;21(2):163–7.

    Article  CAS  Google Scholar 

  38. Curt GA, et al. A phase I and pharmacokinetic study of diamminecyclobutane-dicarboxylatoplatinum (NSC 241240). Cancer Res. 1983;43(9):4470–3.

    CAS  Google Scholar 

  39. Frenkel J, et al. Acute renal failure in high dose carboplatin chemotherapy. Med Pediatr Oncol. 1995;25(6):473–4.

    Article  CAS  Google Scholar 

  40. Gordon SJ, et al. Toxicity of single-day high-dose vincristine, melphalan, etoposide and carboplatin consolidation with autologous bone marrow rescue in advanced neuroblastoma. Eur J Cancer. 1992;28a(8-9):1319–23.

    Article  CAS  Google Scholar 

  41. McDonald BR, et al. Acute renal failure associated with the use of intraperitoneal carboplatin: a report of two cases and review of the literature. Am J Med. 1991;90(3):386–91.

    Article  CAS  Google Scholar 

  42. Foster BJ, et al. Results of NCI-sponsored phase I trials with carboplatin. Cancer Treat Rev. 1985;12(Suppl A):43–9.

    Article  Google Scholar 

  43. Miller RP, et al. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2(11):2490–518.

    Article  CAS  Google Scholar 

  44. Kemp G, et al. Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol. 1996;14(7):2101–12.

    Article  CAS  Google Scholar 

  45. Hensley ML, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27(1):127–45.

    Article  CAS  Google Scholar 

  46. Von Hoff DD, et al. Incidence of drug-related deaths secondary to high-dose methotrexate and citrovorum factor administration. Cancer Treat Rep. 1977;61(4):745–8.

    Google Scholar 

  47. Abelson HT, et al. Methotrexate-induced renal impairment: clinical studies and rescue from systemic toxicity with high-dose leucovorin and thymidine. J Clin Oncol. 1983;1(3):208–16.

    Article  CAS  Google Scholar 

  48. Goren MP, et al. Cancer chemotherapy-induced tubular nephrotoxicity evaluated by immunochemical determination of urinary adenosine deaminase binding protein. Am J Clin Pathol. 1986;86(6):780–3.

    Article  CAS  Google Scholar 

  49. Weiss RB, et al. Nephrotoxicity of semustine. Cancer Treat Rep. 1983;67(12):1105–12.

    CAS  Google Scholar 

  50. Harmon WE, et al. Chronic renal failure in children treated with methyl CCNU. N Engl J Med. 1979;300(21):1200–3.

    Article  CAS  Google Scholar 

  51. Schacht RG, et al. Nephrotoxicity of nitrosoureas. Cancer. 1981;48(6):1328–34.

    Article  CAS  Google Scholar 

  52. Porta C, et al. Renal effects of targeted anticancer therapies. Nat Rev Nephrol. 2015;11(6):354–70.

    Article  CAS  Google Scholar 

  53. Belliere J, et al. Acute interstitial nephritis related to immune checkpoint inhibitors. Br J Cancer. 2016;115(12):1457–61.

    Article  CAS  Google Scholar 

  54. Cortazar FB, et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 2016;90(3):638–47.

    Article  CAS  Google Scholar 

  55. Perazella MA. Checkmate: kidney injury associated with targeted cancer immunotherapy. Kidney Int. 2016;90(3):474–6.

    Article  Google Scholar 

  56. Ollero M, Sahali D. Inhibition of the VEGF signalling pathway and glomerular disorders. Nephrol Dial Transpl. 2015;30(9):1449–55.

    Article  CAS  Google Scholar 

  57. Finkel KW, Howard SC. Onco-nephrology: an invitation to a new field. J Clin Oncol. 2014;32(22):2389–90.

    Article  Google Scholar 

  58. Luxton RW. Radiation nephritis. A long-term study of 54 patients. Lancet (London, England). 1961;2(7214):1221–4.

    Article  CAS  Google Scholar 

  59. Bailey S, et al. Nephrotoxicity in survivors of Wilms’ tumours in the North of England. Br J Cancer. 2002;87(10):1092–8.

    Article  CAS  Google Scholar 

  60. Wikstad I, et al. Kidney function in adults born with unilateral renal agenesis or nephrectomized in childhood. Pediatr Nephrol (Berlin, Germany). 1988;2(2):177–82.

    Article  CAS  Google Scholar 

  61. Levitt GA, et al. Renal size and function after cure of Wilms’ tumour. Br J Cancer. 1992;66(5):877–82.

    Article  CAS  Google Scholar 

  62. Finklestein JZ, et al. Diastolic hypertension in Wilms’ tumor survivors: a late effect of treatment? A report from the National Wilms’ Tumor Study Group. Am J Clin Oncol. 1993;16(3):201–5.

    Article  CAS  Google Scholar 

  63. Welch TR, McAdams AJ. Focal glomerulosclerosis as a late sequela of Wilms tumor. J Pediatr. 1986;108(1):105–9.

    Article  CAS  Google Scholar 

  64. Tiburcio FR, et al. Glomerular hyperfiltration and beta-2 microglobulin as biomarkers of incipient renal dysfunction in cancer survivors. Future Sci OA. 2018;4(8):Fso333.

    Article  CAS  Google Scholar 

  65. Kwatra NS, et al. Glomerular hyperfiltration in children with cancer: prevalence and a hypothesis. Pediatr Radiol. 2017;47(2):221–6.

    Article  Google Scholar 

  66. Hjorth L, et al. Hyperfiltration evaluated by glomerular filtration rate at diagnosis in children with cancer. Pediatr Blood Cancer. 2011;56(5):762–6.

    Article  Google Scholar 

  67. Ness KK, et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the St Jude Lifetime cohort study. J Clin Oncol. 2013;31(36):4496–503.

    Article  Google Scholar 

  68. Bardi E, et al. Late effects on renal glomerular and tubular function in childhood cancer survivors. Pediatr Blood Cancer. 2004;43(6):668–73.

    Article  Google Scholar 

  69. Cozzi DA, et al. Renal function recovery after nephrectomy or nephron-sparing surgery in children with unilateral renal tumor. Eur J Pediatr Surg. 2017;27(1):74–80.

    Google Scholar 

  70. Ruggiero A, et al. The ability of mannitol to decrease cisplatin-induced nephrotoxicity in children: real or not? Cancer Chemother Pharmacol. 2016;77(1):19–26.

    Article  CAS  Google Scholar 

  71. Landier W, et al. Yield of screening for long-term complications using the children’s oncology group long-term follow-up guidelines. J Clin Oncol. 2012;30(35):4401–8.

    Article  Google Scholar 

  72. Mudi A, et al. Paediatric cancer survivors demonstrate a high rate of subclinical renal dysfunction. Pediatr Blood Cancer. 2016;63(11):2026–32.

    Article  CAS  Google Scholar 

  73. Herrera-Perez Z, et al. A comprehensive review on the genetic regulation of cisplatin-induced nephrotoxicity. Curr Genomics. 2016;17(3):279–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick Skinner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skinner, R., Hjorth, L. (2021). Kidney Disease in Childhood Cancer Survivors. In: Beck, J.D., Bokemeyer, C., Langer, T. (eds) Late Treatment Effects and Cancer Survivor Care in the Young. Springer, Cham. https://doi.org/10.1007/978-3-030-49140-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49140-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49138-3

  • Online ISBN: 978-3-030-49140-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics