Skip to main content
Log in

Changes in the level of octopine during the escape responses of the scallop,Pecten maximus (L.)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The activities of octopine dehydrogenase (ODH) and α-glycerophosphate dehydrogenase (GDH) were determined in several tissues ofPecten maximus. The ratios of ODH/GDH were 13 for the adductor muscle, 9 for the mantle and 3 for the digestive gland and the gill. Therefore, the main pathway for the glycolytic re-oxidation of NADH seemed to be via the formation of octopine.

  2. 2.

    During burst activity the level of arginine phosphate in the adductor muscle declined concurently with an increase in arginine. Little octopine, however, accumulated until the animals were exhausted; the main increase in octopine concentration took place during the beginning of the subsequent rest period.

  3. 3.

    It is concluded that inPecten maximus there is no “flare-up” of glycolysis during burst activity. Instead the increased demand for ATP is met by the breakdown of arginine phosphate. Octopine accumulates later, possibly due to a stimulation of glycolysis brought about by the activation of phosphofructokinase by AMP at low levels of arginine phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GDH:

α-glycerophosphate dehydrogenase (E.C.1.1.1.8)

ODH:

octopine dehydrogenase (E.C.1.5.1.11)

LDH:

lactate dehydrogenase (E.C.1.1.1.27)

DTT:

dithiothreitol

References

  • Fields, J.H.A., Baldwin, J., Hochachka, P.W.: On the role of octopine dehydrogenase in cephalopod mantle muscle metabolism. Canad. J. U Zool.54, 871–878 (1976)

    Google Scholar 

  • Gäde, G.: Anaerobic metabolism of the common cockle,Cardium edule. I. The utilization of glycogen and accumulation of multiple end products. Arch. int. Physiol. Biochim.83, 879–886 (1975)

    Google Scholar 

  • Gäde, G., Grieshaber, M.: Partial purification and properties of octopine dehydrogenase and the formation of octopine inAnodonta cygnea. J. comp. Physiol.102, 149–158 (1975a)

    Google Scholar 

  • Gäde, G., Grieshaber, M.: A rapid and specific enzymatic method for the estimation of L-arginine. Analyt. Biochem.66, 393–399 (1975b)

    Google Scholar 

  • Gäde, G., Zebe, E.: Über den Anaerobiosestoffwechsel von Molluskenmuskeln. J. comp. Physiol.85, 291–301 (1973)

    Google Scholar 

  • Grieshaber, M., Gäde, G.: The biological role of octopine in the squid,Loligo vulgaris (Lamarck). J. comp. Physiol.108, 225–232 (1976)

    Google Scholar 

  • Grieshaber, M., Gäde, G.: Energy supply and the formation of octopine in the adductor muscle of the scallop,Pecten jacobaeus (Lamarck). Comp. Biochem. Physiol.58B, 249–252 (1977)

    Google Scholar 

  • Groves, W.E., Davis, F.C., Sells, B.H.: Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. Analyt. Biochem.22, 195–210 (1968)

    Google Scholar 

  • Hochachka, P.W.: Design of metabolic and enzymic machinery to fit lifestyle and environment. Biochem. Soc. Symp.41, 3–31 (1976)

    Google Scholar 

  • Hochachka, P.W., Hartline, P.H., Fields, J.H.A.: Octopine as an end product of anaerobic glycolysis in the chamberedNautilus. Science195, 72–74 (1977)

    Google Scholar 

  • Hiltz, D.F., Dyer, W.J.: Octopine in postmortem adductor muscle of the sea scallop (Placopecten maglellanicus). J. Fish. Res. Bd. Canada28, 869–874 (1971)

    Google Scholar 

  • O'Doherty, P.J.A., Feltham, L.A.W.: Glycolysis and gluconeogenesis in the giant scallopPlacopecten magellanicus (Gmelin). Comp. Biochem. Physiol.38B, 543–551 (1971)

    Google Scholar 

  • Thoai, N. van, Huc, C., Pho, D.B., Olomucki, A.: Octopine deshydrogenase. Purification et proprietes catalytiques. Biochim. biophys. Acta191, 46–57 (1969)

    Google Scholar 

  • Thomas, G.E., Gruffydd, Ll.D.: The types of escape reactions elicited in the scallopPecten maximus by selected sea-star species. Mar. Biol.10, 87–93 (1971)

    Google Scholar 

  • Storey, K.B.: Purification and properties of adductor muscle phosphofructokinase from the oyster,Crassostrea virginica. Europ. J. Biochem.70, 331–337 (1976)

    Google Scholar 

  • Zammit, V.A., Newsholme, E.A.: The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenase, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles of marine invertebrates. Biochem. J.160, 447–462 (1976)

    Google Scholar 

  • Zwaan, A. de: Anaerobic energy metabolism in bivalve molluses. Oceanogr. Mar. Biol. Ann. Rev.15, 103–187 (1977)

    Google Scholar 

  • Zwaan, A. de, Kluytmans, J.H.F.M., Zandee, D.I.: Facultative anaerobiosis in molluses. Biochem. Soc. Symp.41, 133–168 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gäde, G., Weeda, E. & Gabbott, P.A. Changes in the level of octopine during the escape responses of the scallop,Pecten maximus (L.). J Comp Physiol B 124, 121–127 (1978). https://doi.org/10.1007/BF00689172

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689172

Keywords

Navigation