Skip to main content
Log in

Communicating hydrocephalus in rodents treated withβ,β′-iminodipropionitrile (IDPN)

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

β,β′-Iminodipropionitrile (IDPN), a neurotoxic compound known to induce swellings in the proximal internodes of sensory and motor axons in several parts of the central nervous system (CNS), was also found to cause hydrocephalus in rats and guinea pigs. In both species, ventricular dilatation was observed within 1 week following a single i.p. injection of IDPN. While in rats the severity of hydrocephalus correlated with dose and duration of IDPN exposure, in guinea pigs studies with high doses yielded inconclusive results, and no significant temporal correlation was noted. Parallel investigations with another peurotoxic agent, acrylamide, in rats, and with IDPN in cats failed to demonstrate any change in size and shape of the cerebrospinal fluid (CSF) pathways. No signs of spontaneously occurring hydrocephalus were found in control animals. In both rats and guinea pigs intoxicated with IDPN, macroscopic and microscopic findings were consistent with the diagnosis of communicating hydrocephalus. Treatment of hydrocephalic rats with acetazolamide (500 mg/kg) markedly attenuated ventricular distention, suggesting that an overproduction of CSF by the choroid plexus is responsible for the communicating hydrocephalus following IDPN intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahdab-Barmada M, Moossy J, Preble OT, Youngner JS (1982) Hydrocephalus in weanling mice induced by a temperaturesensitive mutant of vesicular stomatitis virus. J Neuropathol Exp Neurol 41:606–617

    Google Scholar 

  • Berry RJ (1961) The inheritance and pathogenesis of hydrocephalus-3 in the mouse. J Pathol Bacteriol 81:157–167

    Google Scholar 

  • Birzis L, Carter CH, Maren TH (1958) Effect of acetazolamide on CSF pressure and electrolytes in hydrocephalus. Neurology 8:522–528

    Google Scholar 

  • Bloch R, Talalla A (1976) A mathematical model of cerebrospinal fluid dynamics. J Neurol Sci 27:485–498

    Google Scholar 

  • Bonnevic K (1943) Hereditary hydrocephalus in the house mouse. I. Manifestation of thehy-mutation after birth and in embryos 12 days old or more. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo. I. Mat-Naturv Klasse 4:1–32. I. Kommisjon Hos Jacob Dybwad, Oslo

    Google Scholar 

  • Borgesen SE, Gjerris F (1982) The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 105:65–86

    Google Scholar 

  • Borit A (1976) Communicating hydrocephalus causing aqueductal stenosis. Neuropädiatrie 7:416–422

    Google Scholar 

  • Borit A, Sidman RL (1972) New mutant mouse with communicating hydrocephalus and secondary aqueductal stenosis. Acta Neuropathol (Berl) 21:316–331

    Google Scholar 

  • Cavanagh JB (1982) The pathokinetics of acrylamide intoxication; a reassessment of the problem. Neuropathol Appl Neurobiol 3:315–336

    Google Scholar 

  • Clark WG, Cumby HR (1981) Arachidonate-induced hydrocephalus and hyperthermia: “dilutional tolerance” to centrally injected pyrogen and PGE1. Brain Res Bull 7:515–518

    Google Scholar 

  • Collins FS, Mahoney MJ (1983) Hydrocephalus and abnormal digits after failed first-trimester prostaglandin abortion attempt. J Pediatr 102:620–621

    Google Scholar 

  • Cutler RWP, Murray JE, Moody RA (1973) Overproduction of cerebrospinal fluid in communicating hydrocephalus. Neurology 23:1–5

    Google Scholar 

  • Delio DA, Fiori MG, Sharer LR, Lowndes HE (1985) Evolution of axonal swellings in cats intoxicated withβ,β′-iminodipropionitrile (IDPN). An electrophysiological and morphological study. Exp Neurol (in press)

  • Eisenberg HM, McLennan JE, Welch K (1974) Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg 38:282–287

    Google Scholar 

  • Feldman AM, Smith T, Epstein MH, Brusilow SW (1978) Effects of indomethacin on cholera toxin-induced cerebrospinal fluid production. Brain Res 142:379–383

    Google Scholar 

  • Feldman AM, Epstein MH, Brusilow SW (1980) Role of cyclic AMP in cerebrospinal fluid production. In: Wood JH (ed) Neurobiology of cerebrospinal fluid 1. Plenum Press, New York, pp 17–27

    Google Scholar 

  • Friedrich VL Jr, Mugnaini E (1981) Electron microscopy: preparation of neural tissues for electron microscopy. In: Heimer L, RoBards MJ (eds) Neuroanatomical tract-tracing methods. Plenum Press, New York, pp 345–375

    Google Scholar 

  • Gambetti P, Shecket G, Ghetti B, Hirano A, Dahl D (1983) Neurofibrillary changes in human brain. An immunocytochemical study with a neurofilament antiserum. J Neuropathol Exp Neurol 42:69–79

    Google Scholar 

  • Ghatak NR, McWhorter JM (1976) Ultrastructural evidence for CSF production by a choroid plexus papilloma. J Neurosurg 45:409–415

    Google Scholar 

  • Go KG, Stokroos I, Blaauw EH, Zuiderveen F, Molenaar I (1976) Changes of ventricular ependyma and choroid plexus in experimental hydrocephalus., as observed by scanning electron microscopy. Acta Neuropathol (Berl) 34:55–64

    Google Scholar 

  • Goehlert UG, Ng Ying Kin NMK, Wolfe LS (1981), Biosynthesis of prostacyclin in rat cerebral microvessels and the choroid plexus. J Neurochem 36:1192–1201

    Google Scholar 

  • Green MC (1970) The developmental effects of congenital hydrocephalus (ch) in the mouse. Dev Biol 23:585–608

    Google Scholar 

  • Griffin JW, Hoffman PN, Clark AW, Carrol PT, Price DL (1978) Slow axonal transport of neurofilament proteins: impairment byβ,β′-iminodipropionitrile administration. Science 202:633–635

    Google Scholar 

  • Hakim S, Venegas JG, Burton JD (1976) The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg Neurol 5:187–210

    Google Scholar 

  • Hartmann HA, White SK, Levine RL (1983) Neuroaxonal dystrophy with neuromelanin deposition, neurofibrillary tangles, and neuronal loss. Light- and electron-microscopic changes in a 45-year-old woman with progressibe psychomotor deterioration. Acta Neuropathol (Berl) 61:169–172

    Google Scholar 

  • Haywood JR, Vogh BP (1979) Some measurements of autonomic nervous system influence on production of cerebrospinal fluid in the cat. J Pharmacol Exp Ther 208:341–346

    Google Scholar 

  • Hochwald GM, Sahar A, Sadik AR, Ransohoff J (1969) Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus. Exp Neurol 25:190–199

    Google Scholar 

  • Kaufman HH, Dujovny M, Huchton JD, Kossovsky N, Miller M, Carmel PC (1980) “Natural” canine model of infantile hydrocephalus. Neurosurgery 6:142–148

    Google Scholar 

  • Kohn DF, Chinookoswong N, Chou SM (1981) A new model of congenital hydrocephalus in the rat. Acta Neuropathol (Berl) 54:211–218

    Google Scholar 

  • Kohn DF, Chinookoswong N, Chou SM (1984) Congenital hydrocephalus. Am J Pathol 114:184–185

    Google Scholar 

  • Konig JFR, Klippel RA (1963) The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams & Wilkins, Baltimore

    Google Scholar 

  • Landrieu P, Ninane J, Ferriere G, Lyon G (1979) Aqueductal stenosis in X-linked hydrocephalus: a secondary phenomenon? Dev Med Child Neurol 21:637–642

    Google Scholar 

  • Leech RW, Haugse CN, Christoferson LA (1978) Hydrocephalus, congenital hydrocephalus. Am J Pathol 92:567–570

    Google Scholar 

  • Lindberg L-A, Vasenius L, Talanti S (1977) The surface fine structure of the ependymal lining of the lateral ventricle in rats with hereditary hydrocephalus. Cell Tissue Res 179:121–129

    Google Scholar 

  • Lindvall M, Edvinsson L, Owman, Ch (1978) Histochemical, ultrastructural, and functional evidence for a neurogenic control of CSF production from the choroid plexus. In: Cervos-Navarro J, Betz E, Ebhardt G, Ferszt R, Wullenweber R (eds) Pathology of cerebrospinal microcirculation: Adv Neurol, vol 20. Raven Press, New York, pp 111–120

    Google Scholar 

  • Macri JJ, Politoff A, Rubin R, Dixon R, Rall D (1966) Preferential vasoconstrictor properties of acetazolamide on the arteries of the choroid plexus. Int J, Neuropharmacol 5:109–115

    Google Scholar 

  • Masters C (1978) Pathogenesis of the Arnold-Chiari malformation: the significance of hydrocephalus and aqueduct stenosis. J Neuropathol Exp Neurol 37:56–74

    Google Scholar 

  • Masters C, Alpers M, Kakulas B (1977) Pathogenesis of reovirus type 1 hydrocephalus in mice. Significance of aqueductal changes. Arch Neurol 34:18–28

    Google Scholar 

  • McComb JG (1983) Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 59:369–383

    Google Scholar 

  • McComb JG, Hyman S, Weiss MH (1983) Cerebrospinal fluid drainage following acute obstruction of the fourth ventricle in the rabbit. Concepts Pediatr Neurosurg 4:90–101

    Google Scholar 

  • Milhorat TH, Clark RG, Hammock MK, McGrath PP (1977) Structural, ultrastructural, and permeability changes in the ependymal and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22:397–407

    Google Scholar 

  • Milhorat TH, Hammock MK, DiChiro G (1971) The subarachnoid space in congenital obstructive hydrocephalus, part 1: Cisternographic findings. J Neurosurg 35:1–6

    Google Scholar 

  • Mitro A, Palkovits M (1981) Morphology of the rat brain ventricles, ependymal and periventricular structures. Karger, Basel (Bibl Anat no. 21)

    Google Scholar 

  • Nakayama DK, Harrison MR, Berger MS, Chinn DH, Halks-Miller M, Edwards MS (1983) Correction of congenital hydrocephalus in utero. I. The model: intracisternal kaolin produces hydrocephalus in fetal lambs and rhesus monkeys. J Pediatr Surg 18:331–338

    Google Scholar 

  • Nathanson JA (1982) Adrenergic regulation of cerebrospinal fluid and aqueous humor. Trends Pharmacol Sci 3:452–454

    Google Scholar 

  • Newman LJ, Heitlinger L, Hiesiger E, Kotsilimbas D, Puljic S (1980) Communicating hydrocephalus following total parenteral nutrition. J Pediatr Surg 15:215–217

    Google Scholar 

  • Nugent GR, Al-Mefty O, Chou S (1979) Communicating hydrocephalus as a cause of aqueductal stenosis. J Neurosurg 51:812–818

    Google Scholar 

  • Ogata J, Hochwald GM, Cravioto H, Ransdorff J (1972) Light-and electron-microscopic studies of experimental hydrocephalus. Ependymal and subependymal areas. Acta Neuropathol (Berl) 21:213–223

    Google Scholar 

  • Papasozomenos SCh, Autilio-Gambetti L, Gambetti P (1981) Reorganization of axoplasmic organelles followingβ,β′-iminodipropionitrile administration. J Cell Biol 91:866–871

    Google Scholar 

  • Park AW, Nowosielski-Slepowron BJA (1979) Hydrocephalus in the laboratory rat. Acta Morphol Neerl Scand 17:191–207

    Google Scholar 

  • Raimondi AJ, Bailey OT, McLone DG, Lawson RF, Echeverry A (1973) The pathophysiology and morphology of murine hydrocephalus in hy-3 and ch mutants. Surg Neurol 1:50–55

    Google Scholar 

  • Sanchez-Martin JA (1959) Neuromotor paraplegia and polyserositis in rats after chronic parenteral administration ofβ,β′-iminodipropionitrile (IDPN). Exp Med Surg 14:155–163

    Google Scholar 

  • Selye H (1957) Lathyrism. Rev Can Biol 16:1–82

    Google Scholar 

  • Shimono M, Izumi K, Kuroiwa Y (1978) 3,3′-iminodipropionitrile induced centrifugal segmental demyelination and onion bulb formation. J Neuropathol Exp Neurol 37:375–386

    Google Scholar 

  • Sterman AB, Sposito N, Manos C, Shirey L (1984) Acrylamideintoxication changes the structure of superior cervical ganglion (SCG) neurons. Neurotoxicol 5:312

    Google Scholar 

  • Sweeney MF, Bell WE, Doty DB, Schieken RM (1982) Communicating hydrocephalus secondary to venous complications following intraatrial baffle operation (Mustard procedure) for d-transposition of the great arteries. Pediatr Cardiol 3:237–240

    Google Scholar 

  • Torvik A, Stenwig AE, Finseth I (1981) The pathology of experimental obstructive hydrocephalus. A scanning electron-microscopic study. Acta Neuropathol (Berl) 54:143–147

    Google Scholar 

  • Townsend JB, Ziedonis DM, Bryan RM, Brennan RW, Page RB (1984) Choroid plexus blood flow: Evidence for dopaminergic influence. Brain Res 290:165–169

    Google Scholar 

  • Welch K, Strand R, Bresnan M, Cavazzuti V (1983) Congenital hydrocephalus due to villous hypertrophy of the telencephalic choroid plexuses. J Neurosurg 59:172–175

    Google Scholar 

  • Wellcr RO, Wisniewski H, Shulman K, Terry RD (1971) Experimental hydrocephalus in young dogs: Histological and ultrastructural study of the brain tissue damage. J Neuropathol Exp Neurol 30:613–626

    Google Scholar 

  • Williams B (1973) Is aqueduct stenosis a result of hydrocephalus? Brain 96:399–412

    Google Scholar 

  • Yoon CH, Slaney J (1972) Hydrocephalus: A new mutation in the Syrian golden hamster. J Hered 63:344–346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by USPHS NIH grant NS-11948

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiori, M.G., Sharer, L.R. & Lowndes, H.E. Communicating hydrocephalus in rodents treated withβ,β′-iminodipropionitrile (IDPN). Acta Neuropathol 65, 209–216 (1985). https://doi.org/10.1007/BF00687000

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00687000

Key words

Navigation