Skip to main content
Log in

A theoretical analysis of acoustic microscopy with converging acoustic beams

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A theoretical analysis is carried out to synthesize acoustic material signatures (AMS) of solid plates immersed in water. The distinctive feature of this analysis is that it avoids three major simplifying assumptions of the presently available techniques, which are, paraxial approximation, assumption of perfect reflection and Gaussian summation of the incident field. Presently available techniques can avoid some but not all of these simplifying assumptions for computing the AMS. In this paper the analysis is carried out for lowfrequency acoustic waves generated by a cylindrical transducer without a lens rod. Reasons for these changes in the conventional acoustic microscope geometry is given. The AMS is synthesized for an aluminium plate in presence as well as in absence of water on its one side. As expected a significant difference is observed between the signatures generated under these two situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Lemons, C.F. Quate:A Scanning Acoustic Microscope, Proc. IEEE Ultrasonic Symposium (1973) pp. 18–20

  2. J.M.R. Weaver, M.B. Somekh, G.A.D. Briggs, S.D. Peck, C. Ilett: IEEE Trans. SU-32, 302–312 (1985)

    Google Scholar 

  3. K. Yamanaka, Y. Enomoto, Y. Tsuya: IEEE Trans. SU-32, 313–319 (1985)

    Google Scholar 

  4. E.A. Ash, E.G.S. Paige (eds.):Rayleigh-Wave Theory and Application, Springer Ser. Wave Phen.2, (Springer, Berlin, Heidelberg 1985).

    Google Scholar 

  5. M. Gonser (ed.):Microscopic Methods in Metals, Topics Current Phys.,40, (Springer, Berlin, Heidelberg 1986) Chap. 2

    Google Scholar 

  6. A.J. Miller: IEEE Trans. SU-32, 320–324 (1985)

    Google Scholar 

  7. R.D. Weglein: IEEE Trans. SU-32, 225–234 (1985)

    Google Scholar 

  8. C.F. Quate: IEEE Trans. SU-32, 132–135 (1985)

    Google Scholar 

  9. B. Hadimioglu: Personal communication, 1987

  10. C.H. Dowding, C.G. Muller: Factors Affecting the Relative Magnitude of Acoustic Emissions Generated during the Fracture of Granite in Proc. 28th U.S. Symp. on Rock Mechanics, Tucson, AZ (1987) pp. 359–366

  11. A. Atalar, C.F. Quate, H.K. Wickramasinghe: Appl. Phys. Lett.31, 791–793 (1977)

    Google Scholar 

  12. R.D. Weglein: Appl. Phys. Lett.34, 179–181 (1979)

    Google Scholar 

  13. R.G. Wilson, R.D. Weglein: J. Appl. Phys.55, 3261–3275 (1984)

    Google Scholar 

  14. T. Kundu, A.K. Mal, R.D. Weglein: J. Acoust. Soc.77, 353–361 (1985)

    Google Scholar 

  15. J. Kushibiki, N. Chubachi: IEEE Trans. SU-32, 189–212 (1985)

    Google Scholar 

  16. T. Kundu, A.K. Mal: Int'l J. Eng. Sci.24, 1819–1829 (1986)

    Google Scholar 

  17. T. Kundu: ASME J. Appl. Mech. (1988) (in press)

  18. H.L. Bertoni, T. Tamir: Appl. Phys.2, 157–172 (1973)

    Google Scholar 

  19. L.E. Pitts, T.L. Plona, W.G. Mayer: IEEE Trans. SU-24, 101–108 (1977)

    Google Scholar 

  20. D.B. Bogy, S.M. Gracewski: ASME J. Appl. Mech.50, 405–414 (1983)

    Google Scholar 

  21. T. Kundu: J. Acoust. Soc. Am.83, 18–24 (1988)

    Google Scholar 

  22. T. Kundu: On Some Aspects of Acoustic Material Signature, inMultiple Scattering of Elastic Waves in Random Media and Random Rough Surfaces, ed. by V.K. Varadan and V.V. Varadan (Pub. Kurtz Brothers, Pennsylvania 1987) pp. 823–843

    Google Scholar 

  23. A. Atalar: J. Appl. Phys.49, 5130–5139 (1978)

    Google Scholar 

  24. C.J.R. Sheppard, T. Wilson: Appl. Phys. Lett.38, 858–859 (1981)

    Google Scholar 

  25. K.K. Liang, G.S. Kino, B.T. Khuri-Yakub: IEEE Trans SU-32, 213–222 (1985)

    Google Scholar 

  26. J. Kushibiki, A. Ohkubo, N. Chubachi: Electron. Lett.17, 520–522 (1981)

    Google Scholar 

  27. H. Jeffreys, B.S. Jeffreys:Methods of Mathematical Physics, 2nd ed. University Press (Cambridge 1950) pp. 505–507

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, T. A theoretical analysis of acoustic microscopy with converging acoustic beams. Appl. Phys. B 46, 325–331 (1988). https://doi.org/10.1007/BF00686455

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00686455

PACS

Navigation