Skip to main content
Log in

Processing an acoustic microscope’s spatiotemporal signal to determine the parameters of an isotropic layer

  • Acoustic Signal Processing. Computer Simulation
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

This paper presents a method for measuring the thickness and velocities of body waves and the density of an isotropic layer by a pulse scanning acoustic microscope. The method is based on recording the microscope signal as a function of the displacement magnitude of the focused ultrasonic transducer along its axis perpendicular to the sample surface and on the decomposition of the recorded 2D spatiotemporal signal into the spectrum of plane pulse waves. The velocities of the longitudinal and transverse waves and the layer’s thickness are calculated from the relative delays of the components of the spectrum of plane waves reflected from the surfaces of the layer and the density is computed by the amplitudes of these components. An experimental investigation of a test sample in the form of a glass plate carried out in the 50-MHz range shows that the error in measuring the thickness and velocities of body waves does not exceed 1% and the density measurement error does not exceed 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. D. Brigg and O. V. Kolosov, Acoustic Microscopy, Sec. Ed., (Oxford Univ., New York, 2010).

    Google Scholar 

  2. V. M. Levin, A. A. Goryunov, Yu. S. Petronyuk, and K. V. Zakutailov, in Proc. 2011 Int. Cong. on Ultrasonics ICU-2011, (Gdansk, Poland, 2011), p.124.

    Google Scholar 

  3. Yu. S. Petronyuk, V. M. Levin, and S. A. Titov, Physics Procedia 70 626–630 (2015).

    Article  ADS  Google Scholar 

  4. V. Hänel and B. Kleffner, in Proc. Int. Symp. Acoustical Imaging, (Santa Barbara, CA, USA, 1998).

    Google Scholar 

  5. V. Hänel, J. Appl. Phys. 84 (2), 668–670 (1998).

    Article  ADS  Google Scholar 

  6. J. Chen, X. Bai, K. Yang, and B.-F. Ju, Ultrasonics 56, 505–511 (2015).

    Article  Google Scholar 

  7. S. A. Titov, R. G. Maev, and A. N. Bogatchenkov, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 50 (8), 1046–1056 (2003).

    Article  Google Scholar 

  8. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  9. J. F. Claerbout, Imaging the Earth’s Interior (Blackwell Sci. Publ., Cambridge, MA, USA, 1985; Nedra, Moscow, 1989).

    Google Scholar 

  10. S. A. Titov and R. G. Maev, Acoust. Phys. 59 (5), 600–607 (2013).

    Article  ADS  Google Scholar 

  11. J. Zhang, P. Guy, J. C. Baboux, and Y. Jayet, J. Appl. Phys. 86 (5), 2825–2835 (1999).

    Article  ADS  Google Scholar 

  12. A. S. Birks, R. E. Green, and P. McIntire, Ultrasonic Testing (Nondestructive Testing) Handbook 2 nd ed., Vol. 7. (Amer. Soc. NondestructiveTesting, Columbus, OH, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Titov.

Additional information

Original Russian Text © S.A. Titov, V.M. Levin, Yu.S. Petronyuk, 2017, published in Akusticheskii Zhurnal, 2017, Vol. 63, No. 6, pp. 692–699.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, S.A., Levin, V.M. & Petronyuk, Y.S. Processing an acoustic microscope’s spatiotemporal signal to determine the parameters of an isotropic layer. Acoust. Phys. 63, 744–750 (2017). https://doi.org/10.1134/S106377101706015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377101706015X

Keywords

Navigation