Skip to main content
Log in

Electrophoretic production of “reactive” axon swellings in vitro and their histochemical properties

  • Original Investigations
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Application of a longitudinal current to fresh unfixed nerves produced, in 2 hrs, various types of axon swellings which were indistinguishable from reactive axon swellings in pathological material. Production of these swellings depended on an adequate time of exposure, an adequate current, and a local injury to the fiber.

In electrophoretically produced axon swellings, many oxidative enzymes accumulated such as: DPN-diaphorase, TPN-diaphorase, cytochrome oxidase, succinic dehydrogenase, lactic dehydrogenase, isocitric dehydrogenase, malic dehydrogenase, glutamate dehydrogenase, and alcohol dehydrogenase. Alkaline and acid phosphatase did not accumulate in axonal swellings. There was also an accumulation of mitochondria, lipids (probably in mitochondrial membranes), proteins, carbohydrates, and ribonucleic acid. This array of substances was identical with that found in reactive axonal swellings produced both experimentally and pathologically in vivo.

Axoplasm in reactive axon swellings that were produced in vivo showed the same electrophoretic convection as axoplasm of normal fibers.

Accumulation of substances in an axon swelling can result from a confined local shift of axoplasm; it does not inherently indicate a changed rate of production by the nerve cell.

Physiological currents in the tissue may well be responsible for the development of “reactive” axon swellings, as well as for the normal convection of axoplasm.

Zusammenfassung

Die Anwendung von Längsdurchströmung auf frische, unfixierte Nerven erzeugt nach 2 Std verschiedene Arten von Axonschwellungen, welche von reaktiven Axonschwellungen in pathologischem Material nicht unterscheidbar sind. Die Erzeugung dieser Schwellungen hängt von der adäquaten Zeit des Stromdurchflusses, von adäquaten Stromkonstanten und von der lokalen Schädigung der Faser ab.

In den elektrophoretisch erzeugten Axonschwellungen häufen sich viele oxydative Enzyme an: so DPN-Diaphorase, TPN-Diaphorase, Cytochrom-Oxydase, Bernsteinsäure-Dehydrogenase, Milchsäure-Dehydrogenase, Isocitronensäure-Dehydrogenase, Äpfelsäure-Dehydrogenase, Glutamat-Dehydrogenase und Alkohol-Dehydrogenase. Alkalische und saure Phosphatase waren in den Axonschwellungen nicht vermehrt. Ebenso wird eine Anhäufung von Mitochondrien sowie von Lipoiden (wahrscheinlich in Mitochondrienmembranen), Proteinen, Kohlenhydrat und Ribonucleinsäure festgestellt. Diese Gruppierung von Substanzen ist identisch mit jener, die in reaktiven Axonschwellungen sowohl im Experiment als auch unter pathologischen Bedingungen in vivo gefunden wird.

Das Axoplasma von intravital erzeugten Axonschwellungen besitzt die gleiche elektrophoretische Mobilität wie das Axoplasma normaler Nervenfasern.

Die Substanzanhäufung in Axonschwellungen kann von einer lokal begrenzten Axoplasmaströmung herrühren; sie weist nicht unbedingt auf eine geänderte Produktionsrate in der Nervenzelle hin.

Physiologische Ströme im Gewebe können ebenso für die Entstehung von “reaktiven” Axonschwellungen wie für die normale Axoplasmaströmung verantwortlich gemacht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, R. O., C. H. Bachman andW. H. Slaughter: Longitudinal direct-current gradients of spinal nerves. Nature (Lond.)196, 675–676 (1962).

    Google Scholar 

  2. Bethe, A.: Über die Natur der Polarisationsbilder, welche durch den konstanten Strom am Nerven hervorgerufen werden können. Z. Biol.52, 146–152 (1909).

    Google Scholar 

  3. —: Nervenpolarisationsbilder und Erregunstheorie. Pflügers Arch. ges. Physiol.183, 28 bis 302 (1920).

    Google Scholar 

  4. Ramon y Cajal, S.: Degeneration and regeneration of the nervous system, p. 1928.R. M. May (trans., and ed.). New York: Hafner Publ. Co. 1959.

    Google Scholar 

  5. Droz, B., andC. P. Leblond: Migration of proteins along the axons of the sciatic nerve. Science137, 1047–1048 (1962).

    Google Scholar 

  6. Friede, R. L.: Transport of oxidative enzymes in nerve fibers; a histochemical investigation of the regenerative cycle in neurons. Exp. Neurol.1, 441–466 (1959).

    Google Scholar 

  7. —: Enzyme histochemical studies in multiple sclerosis. Arch. Neurol (Chic.)5, 433–443 (1961).

    Google Scholar 

  8. —: An enzyme histochemical study of cerebral arteriosclerosis; with some data on the pathogenesis of periarterial scars. Acta neuropath. (Berl.)2, 58–72 (1962).

    Google Scholar 

  9. —,L. M. Fleming andM. Knoller: A quantitative appraisal of enzyme histochemical methods in brain tissue. J. Histochem. Cytochem.11, 232–245 (1963).

    Google Scholar 

  10. Gerard, R. W.: Nerve metabolism. Physiol. Rev.12, 469–592 (1932).

    Google Scholar 

  11. Hebb, C., andA. Silver: Gradient of cholinesterase activity and of choline acetylase activity in nerve fibers; gradient of choline acetylase activity. Nature (Lond.)189, 123–125 (1961).

    Google Scholar 

  12. —, andG. Walthes: Choline acetylase in antero- and retro-grade degeneration of a cholinergic nerve. J. Physiol. (Lond.)132, 667–671 (1956).

    Google Scholar 

  13. Heinzen, B.: Acid phosphatase activity in transected sciatic nerve. Anat. Rec.98, 193–207 (1949).

    Google Scholar 

  14. Hodler, J., R. Stämpfli andI. Tasaki: Role of potential wave spreading along myelinated nerve fiber in excitation and conduction. Amer. J. Physiol.170, 375–389 (1952).

    Google Scholar 

  15. Huxley, A. F., andR. Stämpfli: Evidence for saltatory conduction in peripheral myelinated nerve fibers. J. Physiol. (Lond.)108, 315–339 (1949).

    Google Scholar 

  16. ——: Saltatory transmission of the nervous impulse. Arch. Sci. Physiol.3, 435–447 (1949).

    Google Scholar 

  17. Katsura, S.: Über Wirkungen des konstanten Stroms auf das mikroskopische Bild des Nerven. Pflügers Arch. ges. Physiol.217, 279–292 (1927).

    Google Scholar 

  18. Koenig, H.: The synthesis and peripheral flow of axoplasm. Trans. Amer. Neurol. Ass.83, 162–164 (1928).

    Google Scholar 

  19. Koenig, E., andG. B. Koelle: Mode of regeneration of acetylcholinesterase in cholinergic neurons following irreversible inactivation. J. Neurochem.8, 169–188 (1961).

    Google Scholar 

  20. Lajtha, A.: Protein metabolism in nerve. In: Chemical pathology of the nervous system (J. Folch-Pr, ed.), p. 268–276. Pergamon Press 1961.

  21. Lewis, P. R., andA. F. W. Hughes: The cholinesterase of developing neurones in Xenopus laevis, p. 511–514. In: Metabolism of the nervous system (Derek Richter ed.), p. 511–514. Pergamon Press 1957.

  22. Lubińska, L., S. Niemierko andB. Oderfeld: Gradient of cholinesterase activity and of choline acetylase activity in nerve fibers; gradient of cholinesterase activity. Nature (Lond.)189, 123–125 (1961).

    Google Scholar 

  23. ———, andL. Szwark: Decrease of acetylcholinesterase activity along peripheral nerves. Science135, 368–370 (1962).

    Google Scholar 

  24. Marchart, J.: Alkaline phosphatase activity in normal and degenerating peripheral nerves of the rabbit. J. Anat. (Lond.)83, 229–237 (1949).

    Google Scholar 

  25. Miani, N.: Evidence of proximo-distal movement along the axon of phospholipid synthetized in the nerve cell body. Nature (Lond.)193, 887–888 (1962).

    Google Scholar 

  26. Novelli, A.: A short method for chondriome. J. Histochem. Cytochem.10, 102–103 (1962).

    Google Scholar 

  27. Ochs, S., andE. Burger: Movement of substance proximo-distally in nerve axons as studied with spinal cord injections of radioactive phosphorus. Amer. J. Physiol.194, 499–506 (1958).

    Google Scholar 

  28. — andG. Richards: Axoplasmic flow in ventral root nerve fibers of the cat. Exp. Neurol.5, 349–363 (1962).

    Google Scholar 

  29. — andW. E. DeMyer: Axoplasmic flow rates during nerve regeneration. Exp. Neurol.2, 627–637 (1960).

    Google Scholar 

  30. Pearse, A. G. E.: Histochemistry: Theoretical and applied. Second Ed. Boston: Little, Brown, and Co. 1961.

    Google Scholar 

  31. Roeder, F.: Über Elektrolytegehalt und elementare Zusammensetzung des Froschnerven in dem Verlauf der Leitungsstrecke und ihre Veränderungen mit der Reizung. Biochem. Z.227, 715–726 (1931).

    Google Scholar 

  32. Samuels, A. J., L. L. Boyarsky, R. W. Gerard, B. Libet andM. Brunt: Distribution exchange and migration of phosphate compounds in the nervous system. Amer. J. Physiol.164, 1–15 (1951).

    Google Scholar 

  33. Sato, K.: On the influence of electric polarization upon the stainability of nerve. Folia anat. jap.7, 33–43 (1929).

    Google Scholar 

  34. Sawyer, C. H.: Cholinesterases in degenerating and regenerating peripheral nerves. Amer. J. Physiol.146, 246–253 (1946).

    Google Scholar 

  35. Schlote, W.: Morphologische und histochemische Untersuchungen an retrograden Axonveränderungen im Zentralnervensystem. Acta neuropath. (Berl.)1, 135–158 (1961).

    Google Scholar 

  36. Schwartz, A.: Über die Beeinflussung der primären Färbbarkeit und der Leitungsfähigkeit des polarisierten Nerven durch die den Strom zuführenden Ionen. Pflügers Arch. ges. Physiol.138, 487–524 (1911).

    Google Scholar 

  37. Seeman, J.: Über die Bedeutung der Färbbarkeitsänderung tierischer Gewebe durch elektrische Polarisation. Z. Biol.53, 287–302 (1909).

    Google Scholar 

  38. Snell, R. S.: Changes in the histochemical appearances of cholinesterase in a mixed peripheral nerve following nerve section and compression injury. Brit. J. exp. Path.38, 479–482 (1957).

    Google Scholar 

  39. Waelsch, H.: Some aspects of amino acid and protein metabolism of the nervous system. J. nerv. ment. Dis.126, 33–39 (1958).

    Google Scholar 

  40. Weiss, P.: Endoneurial edema in constricted nerve. Anat. Rec.86, 491–522 (1943).

    Google Scholar 

  41. —: Damming of axoplasm in constricted nerve: A sign of perpetual growth in nerve fibers. Anat. Rec.88, 464–465 (1944).

    Google Scholar 

  42. —: Evidence of perpetual proximo-distal growth of nerve fibers. Biol. Bull.87, 160 (1944).

    Google Scholar 

  43. Weiss, P.: The concept of perpetual neuronal growth and proximodistal-substance convection. In: Regional Neurochemistry (S. S. Kety andJ. Elkes, ed.), p. 220–242. Pergamon Press 1961.

  44. —, andH. B. Hiscoe: Experiments on the mechanism of nerve growth. J. exp. Zool.107, 315–395 (1948).

    Google Scholar 

  45. —,C. Taylor andP. Pillai: The nerve fiber as a system in continuous flow: Microcinematographic and electromicroscopic demonstrations. Science136, 330 (1962).

    Google Scholar 

  46. H. Wang, A. C. Taylor andM. V. Edds jr.: Proximo-distal fluid convection in the endoneurial spaces of peripheral nerves, demonstrated by colored and radioactive (isotope) tracers. Amer. J. Physiol.143, 521–540 (1945).

    Google Scholar 

  47. Young, J. Z.: Contraction, turgor, and the cytoskeleton of nerve fibers. Nature (Lond.)153, 333–335 (1944).

    Google Scholar 

  48. Yuien, K., andK. Sato: On the spreading path of stains injected into the nerve. Folia anat. Jap.7, 419–423 (1929).

    Google Scholar 

  49. Zelená, J., andL. Lubińska: Early changes of acetylcholinesterase activity near the lesion in crushed nerves. Physiol. bohemoslov.11, 261–268 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures in the Text

This investigation was supported by U.S. Public Health Service, Grant No. B-3250.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friede, R.L. Electrophoretic production of “reactive” axon swellings in vitro and their histochemical properties. Acta Neuropathol 3, 217–228 (1964). https://doi.org/10.1007/BF00684397

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00684397

Keywords

Navigation