Skip to main content
Log in

Pulsed NMR study in nuclear ordered solid3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The nuclear spin dynamics in nuclear spin ordered solid3He in low magnetic fields on the melting curve has been studied by pulsed NMR down to 0.6 mK. The free induction decay signals (FID) were measured in single crystals of solid3He at three operating frequencies of 920, 1380, and 1840 kHz. The FIDs were nonexponential and dependent on the rf pulse strength β p ≡γH 1 t w , where γ is the gyromagnetic ratio,H 1 is the rf field strength, andt w is the pulse width. At small β p they decayed almost linearly in time with a small exponential tail at the end. When β p was further increased they became shorter and neither exponential nor linear in time. At large β p they decayed very rapidly and sometimes could not be observed at all because of the dead time of the NMR detection system. Such behavior of the FID was observed in many different single crystals in the given temperature range at 920 kHz. Tsubota and Tsuneto have shown by solving the nonlinear equations of motion numerically that the motion of the nuclear spin becomes chaotic when the tipping angle exceeds a critical value. Comparing their result with our experimental results, we concluded that some of the results of the rapid decay of the FID at large β p might be attributed to the onset of the chaotic motion. At 1840 kHz it is expected that the nonlinear effects in the equations of motion become less effective than that at 920 kHz. In fact, at this operating frequency the FIDs even at large β p and the tipping angle-dependent frequency shift could be observed. These frequency shifts were in rather good agreement with Namaizawa's theory provided an effective tipping angle was taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. P. Halperin, C. N. Archie, F. B. Rasmussen, R. A. Buhrman, and R. C. Richardson,Phys. Rev. Lett. 32, 927 (1974).

    Google Scholar 

  2. T. C. Prewitt and J. M. Goodkind,Phys. Rev. Lett. 39, 1283 (1977).

    Google Scholar 

  3. R. B. Kummer, R. M. Mueller, and E. D. Adams,J. Low Temp. Phys. 27, 319 (1977).

    Google Scholar 

  4. D. D. Osheroff and C. Yu,Phys. Lett. 77A, 458 (1980).

    Google Scholar 

  5. T. Mamiya, A. Sawada, H. Fukuyama, Y. Hirao, K. Iwahashi, and Y. Masuda,Phys. Rev. Lett. 47, 1304 (1981).

    Google Scholar 

  6. T. Hata, S. Yamasaki, M. Taneda, T. Kodama, and T. Shigi,Phys. Rev. Lett. 51, 1573 (1983).

    Google Scholar 

  7. E. D. Adams, E. A. Schubert, G. E. Haas, and D. M. Bakalyar,Phys. Rev. Lett. 44, 789 (1980).

    Google Scholar 

  8. D. D. Osheroff, M. C. Cross, and D. S. Fisher,Phys. Rev. Lett. 44, 792 (1980).

    Google Scholar 

  9. D. D. Osheroff,Physica 109110B+C, 1461 (1982).

    Google Scholar 

  10. H. Godfrin, G. Frossati, A. S. Greenberg, B. Hebral, and D. Thoulouze,Phys. Rev. Lett. 44, 1695 (1980).

    Google Scholar 

  11. T. C. Prewitt and J. M. Goodkind,Phys. Rev. Lett. 44, 1699 (1980).

    Google Scholar 

  12. A. J. Leggett,Ann. Phys. (N.Y.)85, 11 (1974).

    Google Scholar 

  13. C. R. Hu and T. E. Ham,Phys. Rev. B 24, 2478 (1981).

    Google Scholar 

  14. H. Namaizawa,Prog. Theor. Phys. 67, 1989 (1982).

    Google Scholar 

  15. T. Kusumoto, O. Ishikawa, T. Mizusaki, and A. Hirai,Phys. Lett. 100A, 201 (1984).

    Google Scholar 

  16. T. Kusumoto, O. Ishikawa, T. Mizusaki and A. Hirai, inProceedings of the 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), Vol. 1, p. 271.

    Google Scholar 

  17. F. Pobell, Physica109110B+C, 1485 (1982).

    Google Scholar 

  18. S. Brunauer, P. H. Emmett, and E. Teller,J. Am. Chem. Soc. 60, 309 (1938).

    Google Scholar 

  19. T. A. Alvesalo, T. Haavasoja, and M. T. Manninen,J. Low Temp. Phys. 45, 373 (1981).

    Google Scholar 

  20. G. T. Rado and H. Suhl, eds.,Magnetism, Vol. 1 (Academic Press, New York, 1963).

    Google Scholar 

  21. L. R. Corruccini and D. D. Osheroff,Phys. Rev. B 17, 126 (1978).

    Google Scholar 

  22. R. W. Giannetta, E. N. Smith, and D. M. Lee,J. Low Temp. Phys. 45, 295 (1981).

    Google Scholar 

  23. W. F. Brinkman and H. Smith,Phys. Lett. 51A, 449 (1975).

    Google Scholar 

  24. I. A. Fomin,Sov. Phys. JETP. 44, 416 (1976).

    Google Scholar 

  25. M. Tsubota and T. Tsuneto, inProceedings of the 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), Vol. 1, p. 241.

    Google Scholar 

  26. M. Tsubota, T. Ohmi, and T. Tsuneto, private communication.

  27. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharsky,JETP Lett. 39, 390 (1984).

    Google Scholar 

  28. I. A. Fomin,JETP Lett. 39, 387 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusumoto, T., Ishikawa, O., Mizusaki, T. et al. Pulsed NMR study in nuclear ordered solid3He. J Low Temp Phys 59, 269–289 (1985). https://doi.org/10.1007/BF00683779

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683779

Keywords

Navigation