Skip to main content
Log in

Electronic structure and low-temperature properties of V x Nb1−x N alloys

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The vanadium and niobium nitrdes V x Nb1−x N are studied theoretically and experimentally for varying compositionsx. Self-consistent linear muffin-tin orbital band calculations are performed for various ordered supercells corresponding tox=0.0, 0.25, 0.50, 0.75, and 1.0. The band results are used to calculate electron-phonon coupling and spin susceptibility enhancement factors in order to study the variations of specific heat and superconducting transition temperatures with composition. A relative localization of, in particular, the V 3d states is found for the mixed compositions. The superconducting temperatures are found to be more reduced for intermediate compositions than what is expected from a simple interpolation between pure VN and NbN. Effects of spin fluctuations are important for the alloys containing vanadium, but are probably larger than what has been found in our theoretical study, and also containingq≠0 contributions. A small peak in the density of states near the Fermi energy is associated with a flat band near theW point, and causes a shoulder in density of state-dependent properties forx near 0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schwarz,J. Phys. C 8, 809 (1975);10, 195 (1977).

    Google Scholar 

  2. A. Neckel, P. Rastl, R. Eibler, P. Weinberger, and K. Schwarz,J. Phys. C 9, 579 (1976).

    Google Scholar 

  3. D. Glötzel, R. W. Simpson, and H. R. Schober inPhysics of Transition Metals (Inst. Phys. Conf. Ser. No. 55, 1980), p. 567.

  4. D. A. Papaconstantopoulos inPhysics of Transition Metals (Inst. Phys. Conf. Ser. No. 55, 1980), p. 563; B. M. Klein and D. A. Papaconstantopoulos,Phys. Rev. Lett. 32, 1193 (1974).

  5. B. M. Klein and W. Pickett inProceedings of the IV Conference on Superconductivity in d-and f-Band Metals, W. Buckel and W. Weber, eds. (1982).

  6. W. Weber,Phys. Rev. B 8, 5082 (1973).

    Google Scholar 

  7. H. Rietschel and H. Winter,Phys. Rev. Lett. 43, 1256 (1979); H. Rietschel, H. Winter, and W. Reichardt,Phys. Rev. B 22, 4284 (1980).

    Google Scholar 

  8. H. Rietschel,Phys. Rev. B 24, 155 (1981).

    Google Scholar 

  9. C. Geibel, Thesis, Universität Karlsruhe (1982), unpublished.

  10. C. Geibel, H. Rietschel, A. Junod, M. Pelizzone, and J. Muller,J. Phys. F., to be published; M. Pelizzone, Thesis, University of Geneva (1982), unpublished.

  11. Ö. Rapp and C. Crafoord,Phys. Stat. Sol. (b) 64, 139 (1974).

    Google Scholar 

  12. F. Heiniger,Phys. kondens. Materie. 5, 243 (1966).

    Google Scholar 

  13. O. K. Andersen,Phys. Rev. B 12, 3060 (1975).

    Google Scholar 

  14. T. Jarlborg and G. Arbman,J. Phys. F 6, 189 (1976);7, 1635 (1977); G. Arbman and T. Jarlborg,Solid State Commun. 26, 857 (1978).

    Google Scholar 

  15. T. Jarlborg,J. Phys. F 9, 283 (1979).

    Google Scholar 

  16. T. Jarlborg, A. A. Manuel, and M. Peter,Phys. Rev. 27, 4210 (1983).

    Google Scholar 

  17. T. Jarlborg, A. Junod, and M. Peter,Phys. Rev. 27, 1558 (1983).

    Google Scholar 

  18. J. Rath and A. J. Freeman,Phys. Rev. B 11, 2109 (1975); O. Jepsen and O. K. Andersen,Solid State Commun. 9, 1763 (1971); G. Lehmann and M. Taut,Phys. Stat. Sol. 54, 469 (1972).

    Google Scholar 

  19. D. D. Koelling and B. N. Harmon,J. Phys. C 10, 3107 (1975).

    Google Scholar 

  20. G. D. Gaspari and B. L. Gyorffy,Phys. Rev. Lett. 28, 801 (1972).

    Google Scholar 

  21. W. L. McMillan,Phys. Rev. 167, 331 (1968).

    Google Scholar 

  22. K. Bennemann and H. Garland inProceedings of the Conference on Superconductivity in d- and f-Band Metals, Rochester, 1971, D. H. Douglas, ed. (AIP, New York, 1972), p. 103.

  23. T. Jarlborg and A. J. Freeman,Phys. Rev. B 22, 2332 (1980).

    Google Scholar 

  24. P. B. Allen and B. Mitrovic inSolid State Physics F. Seitz, D. Turnbull, and H. Ehrenreich, eds. (Academic Press, New York, 1982).

    Google Scholar 

  25. N. F. Berk and J. R. Schrieffer,Phys. Rev. Lett. 17, 433 (1966).

    Google Scholar 

  26. S. Doniach and S. Engelsberg,Phys. Rev. Lett. 17, 750 (1966).

    Google Scholar 

  27. T. P. Orlando and M. R. Beasley,Phys. Rev. Lett. 46, 1598 (1981).

    Google Scholar 

  28. J. M. Daams, B. Mitrovic, and J. P. Carbotte,Phys. Rev. Lett. 46, 65 (1981).

    Google Scholar 

  29. M. A. Jensen and K. Andres,Phys. Rev. 165, 545 (1968).

    Google Scholar 

  30. G. Riblet,Phys. Rev. B 3, 91 (1971).

    Google Scholar 

  31. F. I. Ajami and R. K. MacCrone,J. Phys. Chem. Solids 36, 5 (1975).

    Google Scholar 

  32. G. Horn and E. Saur,Z. Phys. 210, 70 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dacorogna, M., Jarlborg, T., Junod, A. et al. Electronic structure and low-temperature properties of V x Nb1−x N alloys. J Low Temp Phys 57, 629–649 (1984). https://doi.org/10.1007/BF00683686

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683686

Keywords

Navigation