Skip to main content
Log in

The influence of electron-phonon coupling and spin fluctuations on the superconductivity of the Ti-V alloys

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report a study of the normal and superconducting state properties of the Ti x V1−x alloys for x = 0.4, 0.6, 0.7 and 0.8 with the help of dc magnetization, electrical resistivity and heat capacity measurements along with the electronic structure calculation. The superconducting transition temperature T c of these alloys is higher than that of elemental Ti and is also higher than elemental V for x ≤ 0.7. The roles of electron density of states, electron-phonon coupling and spin fluctuations in the normal and superconducting state properties of these alloys have been investigated in detail. The experimentally observed value of T c is found to be considerably lower than that estimated on the basis of electron density of states and electron-phonon coupling in the x = 0.4, 0.6 and 0.7 alloys. There is some evidence as well for the preformed Cooper pair in all these Ti-V alloys in the temperature regime well above T c . Similar to x = 0.6 [Md. Matin, L.S. Sharath Chandra, R.K. Meena, M.K. Chattopadhyay, A.K. Sinha, M.N. Singh, S.B. Roy, Physica B 436, 20 (2014)], the normal state properties of the x = 0.4 alloy showed the signature of the presence of spin fluctuations. The difference between the experimentally observed T c and that estimated by considering electron density of states and electron-phonon coupling in the x = 0.4, 0.6 and 0.7 alloys is attributed to the possible influence of these spin fluctuations. We show that the non-monotonous variation of T c as a function of x in the Ti x V1−x alloys is due to the combined effects of the electron-phonon coupling and the spin fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V. Vonsovsky, Yu.A. Izyumov, E.Z. Kurmaev, in Superconductivity of Transition Metals: Their Alloys and compounds, translated by E.H. Brandt, A.P. Zavarnitsyn (Springer Verlag, Berlin, 1982) and references therein

  2. P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959)

    Article  ADS  Google Scholar 

  3. B. Sacepe, T. Dubouchet, C. Chapelier, M. Sanquer, M. Ovadia, D. Shahar, M. Feigelman, L. Ioffe, Nat. Phys. 7, 239 (2011), and references therein

    Article  Google Scholar 

  4. R.R. Hake, Phys. Rev. Lett. 23, 1105 (1969)

    Article  ADS  Google Scholar 

  5. R.R. Hake, Phys. Lett. A 32, 143 (1970)

    Article  ADS  Google Scholar 

  6. J.W. Lue, A.G. Montgomery, R.R. Hake, Phys. Rev. B 11, 3393 (1975)

    Article  ADS  Google Scholar 

  7. T. Tai, K. Inoue, A. Kikuchi, T. Takeuchi, T. Kiyoshi, Y. Hishinuma, IEEE Trans. Appl. Supercond. 17, 2542 (2007)

    Article  ADS  Google Scholar 

  8. E.W. Collings, P.E. Upton, J.C. Ho, J. Less-Comm. Metals 42, 285 (1975)

    Article  Google Scholar 

  9. E.W. Collings, in Applied Superconductivity, Metallurgy, And Physics Of Titanium Alloys (Plenum Press, New York, 1986), Vol. 1, 2

  10. J.L. Murray, Bull. Alloy Phase Diagrams 2, 48 (1981)

    Article  Google Scholar 

  11. Md. Matin, L.S. Sharath Chandra, M.K. Chattopadhyay, M.N. Singh, A.K. Sinha, S.B. Roy, Supercond. Sci. Tech. 26, 115005 (2013)

    Article  ADS  Google Scholar 

  12. G. Aurelio, A.F. Guillermet, G.J. Cuello, J. Campo, Metall. Mater. Trans. A 33, 1307 (2002)

    Article  Google Scholar 

  13. E.W. Collings, AIP Conf. Proc. 40, 410 (1978)

    Article  ADS  Google Scholar 

  14. T. Sasaki, S. Hanada, Y. Muto, Physica B 148, 513 (1987)

    Article  Google Scholar 

  15. T. Sasaki, Y. Muto, Physica B 165-166, 291 (1990)

    Article  ADS  Google Scholar 

  16. A.F. Prekul, V.A. Rassokhin, N.V. Volkenshtein, Zhetf Pis. Red. 17, 354 (1973)

    ADS  Google Scholar 

  17. V.A. Rassokhin, N.V. Volkenshtein, E.P. Romanov, A.F. Prekul, Sov. Phys. J. Exp. Theor. Phys. 39, 166 (1974) [Zh. Eksp. Teor. Fiz. 66, 348 (1974)]

    ADS  Google Scholar 

  18. A.F. Prekul, V.A. Rassokhin, N.V. Volkenshtein, Sov. Phys. J. Exp. Theor. Phys. 40, 1134 (1975) [Zh. Eksp. Teor. Fiz. 67, 2286 (1974)]

    ADS  Google Scholar 

  19. A.F. Prekul, V.A. Rassokhin, N.V. Volkenshtein, Sov. Phys. J. Exp. Theor. Phys. Lett. 22, 209 (1975) [Pis’mazh. Eksp. Teor. Fiz. 22, 433 (1975)]

    ADS  Google Scholar 

  20. Md. Matin, L.S. Sharath Chandra, R.K. Meena, M.K. Chattopadhyay, A.K. Sinha, M.N. Singh, S.B. Roy, Physica B 436, 20 (2014)

    Article  ADS  Google Scholar 

  21. A.K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M.N. Singh, R.K. Gupta, S.R. Kane, S.K. Deb, AIP Conf. Proc. 1349, 503 (2011)

    Article  ADS  Google Scholar 

  22. Md. Matin, L.S. Sharath Chandra, M.K. Chattopadhyay, R.K. Meena, R. Kaul, M.N. Singh, A.K. Sinha, S.B. Roy, J. Appl. Phys. 113, 163903 (2013)

    Article  ADS  Google Scholar 

  23. Md. Matin, L.S. Sharath Chandra, M.K. Chattopadhyay, R.K. Meena, R. Kaul, M.N. Singh, A.K. Sinha, S.B. Roy, (2013) (unpublished)

  24. S.H. Vosko, L. Wilk, M. Nussair, Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  25. T.F. Smith, Phys. Lett. A 33, 465 (1970)

    Article  ADS  Google Scholar 

  26. R. Radebaugh, P.H. Keesom, Phys. Rev. 149, 209 (1966)

    Article  ADS  Google Scholar 

  27. N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)

    Article  ADS  Google Scholar 

  28. T.P. Orlando, E.J. McNiff Jr., S. Foner, M.R. Beasley, Phys. Rev. B 19, 4545 (1979)

    Article  ADS  Google Scholar 

  29. B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962)

    Article  ADS  Google Scholar 

  30. A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962)

    Article  ADS  Google Scholar 

  31. W.L. McMillan, Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  32. I. Bakonyi, H. Ebert, A.I. Liechtenstein, Phys. Rev. B 48, 7841 (1993)

    Article  ADS  Google Scholar 

  33. A. Tari, in The Specific Heat of Metals at Low Temperature (Imperial College Press, 2003)

  34. S.K. Bose, J. Phys.: Condens. Matter 21, 025602 (2009)

    ADS  Google Scholar 

  35. R. Lortz, Y. Wang, U. Tutsch, S. Abe, C. Meingast, P. Popovich, W. Knafo, N. Shitsevalova, Yu.B. Paderno, A. Junod, Phys. Rev. B 73, 024512 (2006)

    Article  ADS  Google Scholar 

  36. K.N. Yang, M.B. Maple, L.E. DeLong, J.G. Huber, A. Junod, Phys. Rev. B 39, 151 (1989)

    Article  ADS  Google Scholar 

  37. A. Junod, T. Jarlborg, J. Muller, Phys. Rev. B 27, 1568 (1983)

    Article  ADS  Google Scholar 

  38. Ch. Walti, E. Felder, C. Degen, G. Wigger, R. Monnier, B. Delley, H.R. Ott, Phys. Rev. B 64, 172515 (2001)

    Article  ADS  Google Scholar 

  39. T.P. Orlando, M.R. Beasley, Phys. Rev. Lett. 46, 1981 (1981)

    Article  Google Scholar 

  40. E.V. Galoshina, Usp. Fiz. Nauk 113, 105 (1974)

    Article  Google Scholar 

  41. E.W. Collings, J.C. Ho, Phys. Rev. B 2, 235 (1970)

    Article  ADS  Google Scholar 

  42. S. Misawa, K. Kanematsu, J. Phys. F 6, 2119 (1976)

    Article  ADS  Google Scholar 

  43. G. Barnea, J. Phys. C 8, L216 (1975)

    Article  ADS  Google Scholar 

  44. O. Rapp, C. Crafoord, Phys. Stat. Sol. B 64, 139 (1974)

    Article  ADS  Google Scholar 

  45. H. Rietschel, H. Winter, Phys. Rev. Lett. 43, 1256 (1979)

    Article  ADS  Google Scholar 

  46. M. Wierzbowska, Eur. Phys. J. B 48, 207 (2005)

    Article  ADS  Google Scholar 

  47. S. Doniach, Phys. Rev. Lett. 18, 554 (1967)

    Article  ADS  Google Scholar 

  48. N.F. Berk, J.R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966)

    Article  ADS  Google Scholar 

  49. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  50. P.J. Hirschfeld, M.M. Korshunov, I.I. Mazin, Rep. Prog. Phys. 74, 124508 (2011)

    Article  ADS  Google Scholar 

  51. A. Kolodziejczyk, B. Wiendlocha, R. Zalecki, J. Tobola, S. Kaprzyk, Acta Physica Polonica A 111, 513 (2007)

    ADS  Google Scholar 

  52. S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K.W. Haselwimmer, M.J. Steiner, E. Pugh, I.R. Walker, S.R. Julian, P. Monthoux, G.G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, J. Flouquet, Nature 406, 587 (2000)

    Article  ADS  Google Scholar 

  53. G. Santi, S.B. Dugdale, T. Jarlborg, Phys. Rev. Lett. 87, 247004 (2001)

    Article  ADS  Google Scholar 

  54. H. Rosner, R. Weht, M.D. Johannes, W.E. Pickett, E. Tosatti, Phys. Rev. Lett. 88, 027001 (2002)

    Article  ADS  Google Scholar 

  55. J. Yang, B. Chen, C. Michioka, K. Yoshimura, J. Phys. Soc. Jpn 79, 113705 (2010)

    Article  ADS  Google Scholar 

  56. A.I. Schindler, M.J. Rice, Phys. Rev. 164, 759 (1967)

    Article  ADS  Google Scholar 

  57. A.I. Schindler, B.R. Coles, J. Appl. Phys. 39, 956 (1968)

    Article  ADS  Google Scholar 

  58. K. Kadowaki, S.B. Woods, Solid State Commun. 58, 507 (1986)

    Article  ADS  Google Scholar 

  59. J.M. Daams, B. Mitrovic, J.P. Carbotte, Phys. Rev. Lett. 46, 65 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Sharath Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matin, M., Sharath Chandra, L.S., Pandey, S.K. et al. The influence of electron-phonon coupling and spin fluctuations on the superconductivity of the Ti-V alloys. Eur. Phys. J. B 87, 131 (2014). https://doi.org/10.1140/epjb/e2014-50036-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50036-2

Keywords

Navigation