Skip to main content
Log in

Beyond KTB - electrical conductivity of the deep continental crust

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Great strides have been made in understanding the upper part of the crust by in-situ logging in, and laboratory experiments on core recovered from super-deep bore-holes such as the KTB. These boreholes do not extend into the lower crust, and can contribute little to the elucidation of mechanisms that produce the high electrical conductivities that are commonly observed therein by magneto-telluric (MT) methods. Laboratory studies at simulated lower crustal conditions of temperature, pressure and saturation, on electrolyte saturated rocks thought to have been derived from the lower crust, have not been possible up until now due to their experimental difficulty. It is necessary to subject electrolyte-saturated rock samples to independently controlled confining and pore-fluid pressure, which implies that the rock be sleeved in some impermeable but deformable material, that can withstand the very high temperatures required. Metals are the only materials capable of being used, but these cause great difficulties for cell sealing and conductivity measurement. In this paper we describe recent breakthroughs in experimental work, specifically the development of two new types of sophisticated metal/ceramic seal, and a conductivity measurement technique that enables the measurement of saturated rock conductivity in the presence of a highly conducting metallic sleeve. The advances in experimental technique have enabled us to obtain data on the electrical conductivity of brine saturated basic, acidic and graphite-bearing rocks at lower crustal temperatures and raised pressures. These data have facilitated the comparison of MT derived crustal electrical conductivity profiles with profiles obtained from laboratory experiments for the first time. Initial modelling shows a good agreement between laboratory derived and MT derived profiles only if the mid-crust is composed of amphibolite pervaded by aqueous fluids, and the lower crust is composed of granulite that is saturated with aqueous fluids and/or contains interconnected grain surface films of graphite. The experimental data are consistent with a three layer crust consisting of an aqueous fluid saturated acidic uppermost layer, above an aqueous fluid saturated amphibolite mid-crust, and a granulite lowermost crust, which may or may not be saturated with aqueous fluids, but if not, requires the presence of an additional conduction mechanism such as conduction through thin graphite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alabi, A. O., Camfield, P.A. and Gough, D.I.: 1975, ‘The North American Central Plains Conductivity Anomaly’,Geophys. J. R. Astr. Soc. 43, 815–833.

    Google Scholar 

  • Allmendinger, R. W., Nelson, K. D., Potter, C. J., Barazangi, M., Brown, L. D. and Oliver, J. E.: 1987, ‘Deep Seismic Reflection Characteristics of the Continental Crust’,Geology 15, 304–310.

    Google Scholar 

  • Archie, G. E.: 1942, ‘Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics’,Am. Inst. Min. Met. Eng. 146, 54–62.

    Google Scholar 

  • Beamish, D.: 1986, ‘Deep Crustal Geoelectric Structure Beneath the Northumberland Basin’,Geophys. J. R. Astr. Soc. 84, 619–640.

    Google Scholar 

  • Blundell, D., Freeman, R. and Mueller, S.: 1992,A Continent Revealed: The European Geotraverse, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Brace, W. F., Orange, A. S. and Madden, T. R.: 1965, ‘The Effect of Pressure on the Electrical Resistivity of Water-Saturated Crystalline Rocks’,J. Geophys. Res. 70(22), 5669–5678.

    Google Scholar 

  • Brace, W. F. and Orange, A. S.: 1968, ‘Further Studies of the Effects of Pressure on Electrical Resistivity of Rocks’,J. Geophys. Res. 73(16), 5407–5420.

    Google Scholar 

  • Brodie, K. H. and Rutter, A. H.: 1987, ‘Deep Crustal Extensional Faulting in the Ivrea Zone of Northern Italy’,Tectonophysics 140, 193–212.

    Google Scholar 

  • Cemic, L. and Jansen, E.: 1975, ‘Measurement of the Electrical Conductivity in a Solid Medium High Pressure Cell by A. C. Bridge’,Hi. Temp. Hi. Press. 7, 295–298.

    Google Scholar 

  • Čermák, V.: 1982, ‘Crustal Temperature and Mantle Heat Flow in Europe’,Tectonophys. 83, 123–142.

    Google Scholar 

  • Čermák, V. and Laštovičová, M.: 1987, ‘Temperature Profiles in the Earth of Importance to Deep Electrical Conductivity Models’,Pure Appl. Geophys. 125, 255–284.

    Google Scholar 

  • Crawford, M. L. and Hollister, L. S.: 1986, ‘Metamorphic Fluids: The Evidence from Fluid Inclusions’, in Walther, J. V. and Wood, B. J. (eds.),Advances in Physical Geochemistry, Vol. 5. Springer-Verlag, Berlin, pp. 1–35.

    Google Scholar 

  • Darot, M., Ruffet, C. and Gueguen, Y.: 1994, ‘Experimental Measurements of Transport Properties in Thermally Cracked Granites’, in Meridith, P. G., Glover, P. W. J. and Sammonds, P. R. (eds.),Proceedings of the Crack Systems in Rocks Meeting, 1st-2nd April 1993, University College London. (in press).

  • Downes, H.: 1993, ‘The Nature of the Continental Crust of Europe: Petrological and Geochemical Evidence from Xenoliths’,Phys. Ea. Planet. Int. 79, 195–218.

    Google Scholar 

  • Drury, M. J. and Hyndman, R. D.: 1979, ‘The Electrical Resistivity of Oceanic Basalts’,J. Geophys. Res. 18(B9), 4537–4545.

    Google Scholar 

  • Duba, Al, Huenges, E., Nover, G., Will, G. and Jödicke, H.: 1988, ‘Impedance of Black Shale from Münsterland, 1. Bore-Hole: An Anomalously Good Conductor?’,Geophys. J. 94, 413–419.

    Google Scholar 

  • Duba, A. G. and Shankland, T. J.: 1982, ‘Free Carbon and Electrical Conductivity in the Earth's Mantle’,Geophys. Res. Lett. 9(11), 1271–1274.

    Google Scholar 

  • Etheridge, M. A., Wall, V. J., Cox, S. F. and Vernon, R. H.: 1984, ‘High Fluid Pressures During Regional Metamorphism and Deformation; Implications for Mass Transport and Deformation Mechanisms’,J. Geophys. Res. 89, 4344–4358.

    Google Scholar 

  • Evans, C. J.: 1980,The Seismic and Electrical Properties of Crystalline Rocks under Simulated Crustal Conditions, PhD. Thesis, University of East Anglia, Norwich.

    Google Scholar 

  • Frost, B. R., Fyfe, W. S., Tazaki, K. and Chan, T.: 1989, ‘Grain-Boundary Graphite in Rocks and Implications for High Electrical Conductivity in the Lower Crust’,Nature 340, 134–136.

    Google Scholar 

  • Fuhrman, M. L., Frost, B. R. and Lindsley, D. H.: 1988, ‘Crystallisation Conditions of the Sybille Monzosyenite, Laramie Anorthosite Complex, Wyoming’,J. Petrol. 29, 699–729.

    Google Scholar 

  • Gavrilenko, P. and Gueguen, Y.: 1989, ‘Pressure Dependence of Permeability: A Model for Cracked Rocks’,Geophys.J. Int. 98, 159–172.

    Google Scholar 

  • Glover, P. W. J., Vine, F. J. and Ross, R. G.: 1990, ‘Measurements of Saturated Basic and Acidic Rock Electrical Conductivities at Lower Crustal Temperatures and High Pressures’,Hi. Press. Res. 5, 735–737.

    Google Scholar 

  • Glover, P. W. J., Ross, R. G. and Jolly, H.: 1990, ‘The Measurement of Saturated Rock Electrical Conductivity at Lower Crustal Temperatures and High Pressures’,Hi. Press. Res. 5, 705–707.

    Google Scholar 

  • Glover, P. W. J. and Ross, R. G.: 1990, ‘A Method of Measuring the Electric Conductivity of Saturated Rocks in a High-Pressure Cell Subjected to High Temperatures’,Hi. Temp. Hi. Press. 22, 533–539.

    Google Scholar 

  • Glover, P. W. J. and Vine, F. J.: 1992, ‘Electrical Conductivity of Carbon-Bearing Granulite at Raised Temperatures and Pressures’,Nature 360, 723–726.

    Google Scholar 

  • Glover, P. W. J.: 1989,Electrical Conductivity of Rock Samples Subjected to High Temperatures and Pressures, PhD Thesis, University of East Anglia, Norwich, 2 volumes, 408 pp.

    Google Scholar 

  • Glover, P. W. J. and Vine, F. J.: 1993, ‘Electrical Conductivity of the Continental Crust’, In press.

  • Gough, D. I.: 1986, ‘Seismic Reflectors, Conductivity, Water and Stress in the Continental Crust’,Nature 323, 143–144.

    Google Scholar 

  • Haak, V. and Hutton, V. R. S.: 1986, ‘Electrical Resistivity in the Continental Lower Crust’, in Dawson, J. B., Carswell, D. A., Hall, J. and Wedepohl, K. H. (eds.),The Nature of the Lower Continental Crust, Spec. Pub. Vol. 24, Geol. Soc., London, pp. 35–49.

    Google Scholar 

  • Harris, N.: 1989, ‘Carbon Dioxide in the Deep Crust’,Nature 340, 347.

    Google Scholar 

  • Hermance, J. F.: 1979, ‘The Electrical Conductivity of Materials Containing Partial Melt’,Geophys. Res. Lett. 6, 613–616.

    Google Scholar 

  • Holness, M. B. and Graham, C. M.: 1991, ‘Equilibrium Dihedral Angles in the System H2O-CO2-NaCl-Calcite and Implications for Fluid Flow during Metamorphism’,Contrib. Mineral. Petrol. 108, 368–383.

    Google Scholar 

  • Hyndman, R. D. and Klemperer, S. L.: 1989, ‘Lower Crustal Porosity from Electrical Measurements and Inferences about Composition from Seismic Velocities’,Geophys. Res. Lett. 16, 255–258.

    Google Scholar 

  • Hyndman, R. D. and Shearer, P. M.: 1989, ‘Water in the Lower Continental Crust: Modelling Magneto-Telluric and Seismic Reflection Results’,Geophys. J. Int. 98, 343–365.

    Google Scholar 

  • Jones, A. G.: 1981, ‘On a Type Classification of Lower Crustal Layers under Precambrian Regions’,J. Geophys. 49, 226–233.

    Google Scholar 

  • Jones, A. G.: 1987, ‘MT and Reflection: An Essential Combination’,Geophys. J. R. Astr. Soc. 89, 7–18.

    Google Scholar 

  • Kariya, K. A. and Shankland, T. J.: 1983, ‘Electrical Conductivity of Dry Lower Crustal Rocks’,Geophysics 48(1), 52–61.

    Google Scholar 

  • Kaufman, K. and Keller, G. R.: 1981,The Magnetotelluric Sounding Method, Elsevier, Amsterdam, 595 pp.

    Google Scholar 

  • Kozlovsky, Y.A.: 1984, ‘The World's Deepest Well’,Sci. Am. 251, 106–112.

    Google Scholar 

  • Lee, C. D., Vine, F. J. and Ross, R. G.: 1983, ‘Electrical Conductivity Models for the Continental Crust Based on Laboratory Measurements on High-Grade Metamorphic Rocks’,Geophys. J. R. Astr. Soc. 72, 353–371.

    Google Scholar 

  • Mareschal, M., Fyfe, W. S., Percival, J. and Chan, T.: 1992, ‘Grain Boundary Graphite in Kapukasing Gneisses and Implications for Lower Crustal Conductivity’,Nature 357, 674–676.

    Google Scholar 

  • Marquis, G. and Hyndman, R. D.: 1992, ‘Geophysical Support for Aqueous Fluids in the Deep Crust: Seismic and Electrical Relationships’,Geophys. J. Int. 110, 91–105.

    Google Scholar 

  • Mathez, E. A. and Delaney, J. R.: 1981, ‘The Nature and Distribution of Carbon in Submarine Basalts and Peridotite Nodules’,Earth. Planet. Sci. Lett. 56, 217–232.

    Google Scholar 

  • Merzer, A. M. and Klemperer, S. L.: 1992, ‘High Electrical Conductivity in a Model Lower Crust with Unconnected, Seismically Reflective Layers’,Geophys. J. Int. 108, 895–905.

    Google Scholar 

  • Newton, R. C, Smith, J. V. and Windley, B. F.: 1980, ‘Carbonic Metamorphism, Granulites, and Crustal Growth’,Nature 288, 45–50.

    Google Scholar 

  • Nicolas, A.: 1989,Structures of Ophiolites and Dynamics of Oceanic Lithosphere, Kluwer Academic, Dordrecht.

    Google Scholar 

  • Olhoeft, G. R.: 1981, ‘Electrical Properties of Granite with Implications for the Lower Crust’,J. Geophys. Res. 86(B2), 931–936.

    Google Scholar 

  • Parkhomenko, E. I.: 1982, ‘Electrical Resistivity of Minerals and Rocks at High Temperature and Pressures’,Rev. Geophys. Sp. Phys. 20(2), 193–218.

    Google Scholar 

  • Peterson, J. W. and Newton, R. C.: 1989, ‘CO2-Enhanced Melting of Biotite-Bearing Rocks at Deep-Crustal Pressure-Temperature Conditions’,Nature 340, 378–380.

    Google Scholar 

  • Quist, A. S. and Marshall, W. L.: 1968, ‘Electrical Conductances of Aqueous Sodium Chloride Solutions from 0 to 800 °C and at Pressures to 4000 Bars’,J. Phys. Chem. 72, 684–703.

    Google Scholar 

  • Shankland, T. J.: 1989, ‘A Case of Two Conductors’,Nature 340, 102.

    Google Scholar 

  • Shankland, T. J. and Ander, M. E.: 1983, ‘Electrical Conductivity, Temperatures, and Fluids in the Lower Crust’,J. Geophys. Res. 88(B11), 9475–9484.

    Google Scholar 

  • Stesky, R. S., and Brace, W. F.: 1973, ‘Electrical Conductivity of Serpentinised Rocks to 6 kbars’,J. Geophys. Res. 78, 7614–7621.

    Google Scholar 

  • Taylor, S. R. and McLennan, S. M.: 1985,The Continental Crust: Its Composition and Evolution, Blackwell Scientific, London.

    Google Scholar 

  • Thompson, B. G., Nekut, A. and Kuckes, A. F.: 1983, ‘A Deep Crustal Electromagnetic Sounding in the Georgia Piedmont’,J. Geophys. Res.,88, 9461–9473.

    Google Scholar 

  • Toussaint-Jackson, J. E.: 1984,Laboratory and Theoretical Studies of Electrical Conductivity in Crystalline Rocks, PhD Thesis, University of East Anglia, Norwich.

    Google Scholar 

  • Watson, E. B. and Brennan, J. M.: 1987, ‘Fluids in the Lithosphere, 1. Experimentally-Determined Wetting Characteristics of CO2-H2O Fluids and their Implications for Fluid Transport, Host Rock Physical Properties, and Fluid Inclusion Formation’,Earth Planet Sci. Lett. 85, 497–515.

    Google Scholar 

  • Wendlandt, R. F.: 1981, ‘Influence of CO2 on Melting of Model Granulite Facies Assemblages: A Model for the Genesis of Charnockites’,Am. Miner. 66, 1164–1174.

    Google Scholar 

  • Wood, B. J. and Walther, J. V.: 1983, ‘Rates of Hydrothermal Reactions’,Science 222, 413–415.

    Google Scholar 

  • Yardley, B. W. D.: 1986, ‘Is There Water in the Deep Continental Crust?’,Nature 323, 111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glover, P.W.J., Vine, F.J. Beyond KTB - electrical conductivity of the deep continental crust. Surv Geophys 16, 5–36 (1995). https://doi.org/10.1007/BF00682710

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682710

Key words

Navigation