Skip to main content

Advertisement

Log in

Rock-Type Definition and Pore Characterization of Tight Carbonate Rocks Based on Thin Sections and MICP and NMR Experiments

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Thick tight Ordovician carbonate rocks are present at depths exceeding 5300 m in the Tahe oilfield and their matrix is considered to contain no storage space. An integrated petrographical and petrophysical study was conducted on a set of 25 tight carbonate core samples from Ordovician strata, covering a wide range of lithologies and textures. Six carbonate rock types were characterized by integrating both petrographical and petrophysical data, including thin-section observations and porosity, permeability, mercury injection capillary pressure and nuclear magnetic resonance (NMR) measurements. We found that thick grainstone and limestone with half-filled fractures exhibited good reservoir properties. NMR testing is an invaluable tool for characterizing pore structures in tight carbonate rocks. For example, six rock types can be identified from the NMR T2 distributions and the changes in pore volume under different pressures (up to 20 MPa) can be calculated. NMR technology can be used to perform rapid and accurate rock-type identification and pore network evaluation in tight carbonate rocks. The results provide an experimental foundation for NMR logging interpretations and advance the understanding of geological and geophysical characteristics of ultra-deep carbonate reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Rühl, BP statistical review of world energy 2007. ©BP (2007)

  2. W. Zhao, S. Hu, L. Wei, T. Wang, Y. Li, Nat. Gas Ind. 1, 14–23 (2014)

    Google Scholar 

  3. G.Y. Zhu, M. Wang, T.W. Zhang, Identification of polycyclic sulfides hexahydrodibenzothiophenes and their implications for heavy oil accumulation in ultra-deep strata in Tarim Basin. Mar. Pet. Geol. 78, 439–447 (2016)

    Article  Google Scholar 

  4. F. Tian, Q. Jin, X. Lu, Y. Lei, L. Zhang, S. Zhang, Mar. Pet. Geol. 69(1), 53–73 (2016)

    Article  Google Scholar 

  5. X. Lu, Y. Wang, F. Tian, X. Li, D. Yang, T. Li, Mar. Pet. Geol. 86, 587–605 (2017)

    Article  Google Scholar 

  6. H. Zeng, R. Loucks, X. Janson, G. Wang, Y. Xia, B. Yuan, AAPG Bull. 95(12), 2061–2083 (2011)

    Article  Google Scholar 

  7. S.Z. Sun, Z. Liu, N. Dong, Y. Zhang, L. Yu, P. Wang, in Society of Exploration Geophysicists Annual Meeting (New Orleans, USA, 18–23 October 2015), p. 2821–2825

  8. Q. Jin, F. Tian, J. Chin. Univ. Pet. 37, 515–521 (2013)

    Google Scholar 

  9. Q. Jin, F. Tian, H. Zhang, Acta Pet. Sin. 36(7), 791–798 (2015)

    Article  Google Scholar 

  10. A.R. Adebayo, M.E. Kandil, T.M. Okasha, M.L. Sanni, Int. J. Greenhouse Gas Control 63, 1–11 (2017)

    Article  Google Scholar 

  11. G. Mariappan, N. Sundaraganesan, Spectrochim Acta A 110(6), 169–178 (2013)

    Article  ADS  Google Scholar 

  12. X. Ge, Y. Fan, Y. Cao, Appl. Magn. Reson. 45(2), 155–167 (2014)

    Article  Google Scholar 

  13. M. Claverie, C. Reynaud, in SPE Europec Featured at 78th EAGE Conference and Exhibition (Vienna, Austria, 30 May-2 June 2016), SPE-180182-MS

  14. F. Deng, L. Xiao, M. Wang, Appl. Magn. Reson. 47(11), 1–15 (2016)

    Article  Google Scholar 

  15. U. Farooq, R. Iskandar, E.S.M. Radwan, M.A.H. Hozayen, in Abu Dhabi International Petroleum Exhibition and Conference (Abu Dhabi, UAE, 10-13 November, 2014), SPE-171932-MS

  16. Y. Li, in Society of Exploration Geophysicists Rock Physics & Borehole Geophysics Workshop (Beijing, China, 28-30 August, 2016), p. 56–59

  17. B. Vik, K.E. Sylta, A. Skauge, Transp. Porous Media 93(3), 561 (2012)

    Article  Google Scholar 

  18. M.F. Rezende, S.N. Tonietto, M.C. Pope, AAPG Bull. 97(11), 2085–2101 (2013)

    Article  Google Scholar 

  19. Z.L. He, S.T. Peng, T. Zhang, Oil Gas Geol. 31(6), 743–752 (2010)

    Google Scholar 

  20. F. Tian, X. Lu, S. Zheng, H. Zhang, Y. Rong, D. Yang, Open Geosci. 9, 266–280 (2017)

    Article  Google Scholar 

  21. T.A. Cheema, C.Y. Lee, G.M. Kim, J.G. Hong, M.K. Kwak, C.W. Park, Int. J. Precis. Eng. Manuf. 15(7), 1405–1410 (2014)

    Article  Google Scholar 

  22. O. Faÿ-Gomord, J. Soete, K. Katika, S. Galaup, B. Caline, F. Descamps, Mar. Pet. Geol. 75, 252–271 (2016)

    Article  Google Scholar 

  23. E. Grunewald, R. Knight, Geophysics 74, 215–221 (2009)

    Article  ADS  Google Scholar 

  24. W.E. Kenyon, Soc. Petrophys. Well Log Anal. 38, 21–43 (1997)

    Google Scholar 

  25. B. Vincent, M. Fleury, Y. Santerre, B. Brigaud, NMR relaxation of neritic carbonates: an integrated petrophysical and petrographical approach. J. Appl. Geophys. 74, 38–58 (2011)

    Article  ADS  Google Scholar 

  26. X.M. Ge, Y.R. Fan, Y.F. Xiao, J.Y. Liu, D.H. Xing, D.N. Gu, S.G. Deng, Quantitative evaluation of the heterogeneity for tight sand based on the nuclear magnetic resonance imaging. J. Nat. Gas Sci. Eng. 38, 74–80 (2017)

    Article  Google Scholar 

  27. R.J. Dunham, Classif. Carbonate Rocks 1, 108–121 (1962)

    Google Scholar 

  28. F.F. Wang, T.Z. Tang, T.Y. Liu, H.N. Zhang, Appl. Magn. Reson. 47(4), 1–13 (2016)

    Article  Google Scholar 

  29. M. Liu, R. Xie, C. Li, L. Gao, Appl. Magn. Reson. 48(4), 1–21 (2017)

    Google Scholar 

  30. Z. Yang, Y. Zhang, H. Li, X. Zheng, Q. Lei, Earth Sci. 42(8), 1333–1339 (2017)

    Google Scholar 

  31. F. Rashid, P.W.J. Glover, P. Lorinczi, D. Hussein, R. Collier, J. Lawrence, Permeability prediction in tight carbonate rocks using capillary pressure measurements. Mar. Pet. Geol. 68, 536–550 (2015)

    Article  Google Scholar 

  32. X.M. Ge, Y.R. Fan, J.T. Li, M.A. Zahid, Pore structure characterization and classification using multifractal theory—An application in Santanghu basin of western China. J. Pet. Sci. Eng. 127, 297–304 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Basic Research Program of China (973 Program, Grant No. 2015CB250902), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14040404), the Chinese National Major Fundamental Research Developing Project (Grant No. 2017ZX05008-004), the Chinese National Natural Science Foundation (Grant Nos. 41502149, and U1663204) and the China Postdoctoral Foundation Funded Project (Grant No. 2015M570148). We are deeply grateful to the Tahe Oilfield Branch Company SINOPEC for supplying the data and allowing this paper to be published. We thank two anonymous reviewers for their thorough and critical reviews and suggestions, which have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Wang, W., Liu, N. et al. Rock-Type Definition and Pore Characterization of Tight Carbonate Rocks Based on Thin Sections and MICP and NMR Experiments. Appl Magn Reson 49, 631–652 (2018). https://doi.org/10.1007/s00723-018-0993-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-0993-2

Navigation