Skip to main content
Log in

Anisotropy effects in tantalum, niobium, and vanadium down to the millikelvin temperature range

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Experiments on the transition fields to the normal conducting state were made on single crystals of Ta, Nb, and V in the temperature range between 40 mK and the transition temperature. In tantalum results are presented on the thermodynamic quantitiesT c, μ0 H c(T),D(t), and γ in the clean limit and as a function of impurity concentration at low impurity levels (<0.15 at %). Special attention is paid to the phase transition between type I and type II superconductivity, which occurs at a certain conversion temperatureT*<T c in materials with κ(T c)<1/√2. This transition is found to be strongly anisotropic because of theH c2 anisotropy effect appearing in the type II superconducting state. It is shown that atT=0 no signs of type II superconductivity will appear for κ(T c)⩽0.44, whereas type II superconductivity will be found in every crystal direction for κ(T c)⩾0.50. The analysis ofH c2 anisotropy in Ta in terms of cubic harmonic functions demonstrates that the first anisotropic expansion coefficienta 4 remains finite atT*, whereas the second,a 6, vanishes when type II superconductivity disappears. No significant values of any higher order coefficient could be detected in Ta. For Nb and V the temperature dependence of the anisotropy coefficientsa 4,a 6,a 8, anda 10 was established in the entire temperature range. The diversity of results clearly indicates that different microscopic mechanisms contribute to the observedH c2 anisotropy effect in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Weber, ed.,Anisotropy Effects in Superconductors (Plenum Press, New York, 1977).

    Google Scholar 

  2. P. C. Hohenberg and N. R. Werthamer,Phys. Rev. 153, 493 (1967).

    Google Scholar 

  3. H. Teichler,Phys. Stat. Sol. b 69, 501 (1975).

    Google Scholar 

  4. H. W. Pohl and H. Teichler,Phys. Stat. Sol. B 75, 205 (1976).

    Google Scholar 

  5. H. Teichler, inAnisotropy Effects in Superconductors, H. W. Weber, ed. (Plenum Press, New York, 1977), p. 7.

    Google Scholar 

  6. W. H. Butler,Phys. Rev. Lett. 44, 1516 (1980).

    Google Scholar 

  7. W. H. Butler, inSuperconductivity in d- and f-Band Metals, H. Suhl and M. B. Maple, eds. (Academic Press, New York, 1980), p. 443.

    Google Scholar 

  8. L. Niel, N. Giesinger, H. W. Weber, and E. Schachinger,Phys. Rev. B 32, 2976 (1985).

    Google Scholar 

  9. E. Seidl, H. W. Weber, and H. Teichler,J. Low Temp. Phys. 30, 273 (1978).

    Google Scholar 

  10. H. W. Weber, J. F. Sprona, and E. Seidl,Phys. Rev. Lett. 41, 1502 (1978).

    Google Scholar 

  11. J. F. Sporna, E. Seidl, and H. W. Weber,J. Low Temp. Phys. 37, 639 (1979).

    Google Scholar 

  12. E. Moser, E. Seidl, and H. W. Weber,J. Low Temp. Phys. 49, 585 (1982).

    Google Scholar 

  13. E. Moser, P. Hahn, E. Seidl, H. W. Weber, and E. Schachinger, inSuperconductivity in d- and f-Band Metals, W. Buckel and W. Weber, eds. (Kernforschungszentrum Karlsruhe, 1982), p. 519.

  14. E. Moser, unpublished results (1982).

  15. F. C. von der Lage and H. A. Bethe,Phys. Rev. 71, 612 (1947).

    Google Scholar 

  16. S. J. Williamson,Phys. Rev. B 2, 3545 (1970).

    Google Scholar 

  17. E. Fromm and E. Gebhardt,Gase und Kohlenstoff in Metallen (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  18. O. N. Carlson, F. A. Schmidt, and D. G. Alexander,Met. Trans. 3, 1249 (1972).

    Google Scholar 

  19. F. M. Sauerzopf, E. Seidl, and H. W. Weber,J. Low Temp. Phys. 49, 249 (1982).

    Google Scholar 

  20. J. R. Clem,Ann. Phys. 40, 268 (1966).

    Google Scholar 

  21. D. Eckert and A. Junod, private communication.

  22. B. B. Goodman,IBM J. Res. Dev. 6, 63 (1962).

    Google Scholar 

  23. L. P. Gor'kov,Sov. Phys. JETP 10, 998 (1960).

    Google Scholar 

  24. J. Auer and H. Ullmaier,Phys. Rev. B 7, 136 (1973).

    Google Scholar 

  25. E. Mayerhofer, F. M. Sauerzopf, and H. W. Weber, to be published.

  26. U. Klein, private communication.

  27. G. Eilenberger,Phys. Rev. 153, 584 (1967).

    Google Scholar 

  28. E. Helfand and N. R. Werthamer,Phys. Rev. Lett. 13, 686 (1964).

    Google Scholar 

  29. E. Helfand and N. R. Werthamer,Phys. Rev. 147, 288 (1966).

    Google Scholar 

  30. C. Laa, E. Seidl, and H. W. Weber, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauerzopf, F.M., Moser, E., Weber, H.W. et al. Anisotropy effects in tantalum, niobium, and vanadium down to the millikelvin temperature range. J Low Temp Phys 66, 191–208 (1987). https://doi.org/10.1007/BF00681821

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681821

Keywords

Navigation