Skip to main content
Log in

The aggregation in dodecyltrimethylammonium hydroxide aqueous solutions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aggregation of dodecyltrimethylammonium hydroxide (DTAOH) aqueous solutions has been studied by several methods. It is stepwise and four critical points were found. AtC T=(2.51±0.10)×10−4 mol · dm−3 the surface excess becomes zero, atC T=(1.300±0.041)×10−3 mol · dm−3 small aggregates from, which grow with concentration. AtC T=(1.108±0.010)×10−2 mol · dm−3 true micelles form (CMC) and at (3.02±0.28)×10−2 mol · dm−3 the structure of micelles probably changes affecting their properties. The DTAOH micelles are highly ionized (α=0.8) at the CMC, and decreases to reach very small values when the total concentration increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Graça Nascimento M, Miranda SAF, Nome F (1986) J Phys Chem 90:3366

    Google Scholar 

  2. Ortega F, Rodenas E (1987) J Phys Chem 91:837

    Google Scholar 

  3. Lianos P, Zana R (1983) J Phys Chem 87:1289

    Google Scholar 

  4. Paredes S, Sepúlveda L, Tribout M (1984) J Phys Chem 88:1871

    Google Scholar 

  5. Abuin EA, Lissi E, Araujo PS, Aleixo RMV, Chaimovich H, Bianchi N, Miola L, Quina FH (1983) J Colloid Interface Sci 96:293

    Google Scholar 

  6. Kale KM, Kussler EL, Evans DF (1982) J Soln Chem 11 (8):581

    Google Scholar 

  7. Mukerjee P, Mysels KJ (1971) Natl Stand Ref Data Ser, Natl Bur Stand No 36

  8. Rico I, Latter A (1986) J Phys Chem 90:5970

    Google Scholar 

  9. Bunton C, Gan L, Moffat J, Romsted L, Savelli G (1981) J Phys Chem 85:4118

    Google Scholar 

  10. Klevans HB (1948) J Phys Colloid Chem 52:130

    Google Scholar 

  11. Evans DF, Allen M, Ninham BW, Fouch A (1984) J Phys Chem 13(2):87

    Google Scholar 

  12. Anacker EW, Rush RM, Johnson JS (1964) J Phys Chem 68:81

    Google Scholar 

  13. Davies CW (1962) Ion Association, Butterworths London p 41

    Google Scholar 

  14. Schulz PC (1988/89) Colloids and Surfaces 34:69

    Google Scholar 

  15. Corrin ML, Harkins WD (1947) J Chem Soc 69:679

    Google Scholar 

  16. Sheppard SE (1942) Rev Mod Phys 14:303

    Google Scholar 

  17. Kortüm G (1936) Z physik Chem B33:1 — (1986)B34:255

    Google Scholar 

  18. Lewschin WL (1934) Acta Physicochim URSS 1:685

    Google Scholar 

  19. Mandel J (1964) Statistical Analysis of Experimental Data Interscience Pub Co New York

  20. Zimmels Y, Lin IJ (1974) Colloid Polym Sci 252:594

    Google Scholar 

  21. Zimmels Y, Lin IJ, Friend JP (1975) Colloid & Polymer Sci 253:404

    Google Scholar 

  22. Sköld RO, Tunius MAR (1992) J Colloid Interface Sci 152(1):183

    Google Scholar 

  23. Danielsson I (1956) Acta Acad Abo Ser B XX(15):165

    Google Scholar 

  24. Meguro K, Ikeda K, Otsuji A, Taya M, Yasuda M, Esumi K (1987) J Colloid Interface Sci 118:372

    Google Scholar 

  25. Elworthy PH (1959) J Pharm Pharmacol 11:557

    Google Scholar 

  26. Mukerjee P (1965) J Phys Chem 69:2821

    Google Scholar 

  27. Shedlowsky L, Jacob CW, Epstein MB (1963) J Phys Chem 67:2075

    Google Scholar 

  28. Stenius P, Zilliacus CH (1971) Acta Chem Scand 25(6):2232

    Google Scholar 

  29. Stenius P (1969) Chim Phys Appl Prat Ag Surface C R Congr Inter Deterg 5th Sept 1968 09–13:1023

  30. Schikin ED, Pertsov AV, Amélina EA (1988) Quimica Colloidal, MIR, Moscow p 56

    Google Scholar 

  31. Ekwall P (1964) Proc IVth Internat Congress on Surf Activ Subst p 651

  32. Ekwall P, Lemström KE, Eikrem H, Holmberg P (1967) Acta Chem Scand 21:1402

    Google Scholar 

  33. Ekwall P, Danielsson I, Stenius P (1972) in M T P International Review of Science Surface Chemistry and Colloids Physical Chemistry, London Vol 7 p 97

  34. Wolfram E, Boross V (1971) Forschrittsber Kolloid Polymer 55:143

    Google Scholar 

  35. Durand RR, Yvette W (1968) C R Acad Sci Paris, Ser C 266(25):1658

    Google Scholar 

  36. Muller N, Pellerin JH, Chen WW (1972) J Phys Chem 76:1 3012

    Google Scholar 

  37. Ödberg L (1972) J Colloid Interface Sci 41:2, 298

    Google Scholar 

  38. Anacker EW, Ghose HM (1963) J Phys Chem 67:1713

    Google Scholar 

  39. Anacker EW, Westwell AE (1964) J Phys Chem 68:3490

    Google Scholar 

  40. Zana R (1980) J Colloid Interface Sci 87:330

    Google Scholar 

  41. Lianos P, Zana R (1983) J Phys Chem 87:1289

    Google Scholar 

  42. Gunnarsson G, Johnsson B, Wennerstrom H (1980) J Phys Chem 84:3114

    Google Scholar 

  43. Rohde A, Sackmann E (1979) J Colloid Interface Sci 70:494— (1980) J Phys Chem 84:1598

    Google Scholar 

  44. Bunton CA, Frankson J, Romsted IS (1980) J Phys Chem 84:2607

    Google Scholar 

  45. Schulz PC (1991) Colloid & Polym Sci 269:612

    Google Scholar 

  46. Lianos P, Zana R (1980) J Phys Chem 84:3339

    Google Scholar 

  47. Lianos P, Zana R (1981) Chem Phys Lett 76:62

    Google Scholar 

  48. Lianos P, Zana R (1981) J Colloid Interface Sci 84:100

    Google Scholar 

  49. Lianos P, Zana R (1981) J Colloid Interface Sci 88:594

    Google Scholar 

  50. Ninham BW, Evans DF, Wei GJ (1983) J Phys Chem 87:5020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, P.C., Morini, M.A., Minardi, R.M. et al. The aggregation in dodecyltrimethylammonium hydroxide aqueous solutions. Colloid Polym Sci 273, 959–966 (1995). https://doi.org/10.1007/BF00660374

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00660374

Key words

Navigation