Skip to main content
Log in

Investigations of hard elastic polypropylene with respect to the coil-strand-transition model

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Hard elastic polypropylene was investigated by x-ray scattering using synchrotron radiation and by performing stress strain measurements in different liquids. It was found that the long period increases with elongation up to λ≈1.3–1.4. Beyond this extension a change in the deformation behavior takes place. In the range from λ≈1.1 to λ≈1.3–1.4 the deformation measurements in the different liquids are in good agreement with the coil-strand-transition model. The proposed linear relationship between the deformation work and the elongation could be confirmed. The same holds for the surface energy. Moreover, the calculated ratio between the surface energy and the deformation work agrees with the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. British Patent (1964) (to Canadian Celanese Ltd.), July 1, 962:231

    Google Scholar 

  2. Noether HD, Whitney W (1973) Kolloid Z. u. Z. Polym. 251:991

    Google Scholar 

  3. Park IK, Noether HD (1975) Colloid Polym Sci 253:824

    Google Scholar 

  4. Noether HD, Brody H (1976) Textile Research Journal 46(7):467

    Google Scholar 

  5. Noether HD, Hay IL (1978) J Appl Cryst 11:546

    Google Scholar 

  6. Garber CA, Clark ES (1970) J Macromol Sci-Phys B4(3):499

    Google Scholar 

  7. Clark ES (1973) Structure and Properties of Polymer Films, edited by R.W. Lenz and R.S. Stein, Plenum, New York

    Google Scholar 

  8. Quynn RG, Brody H (1971) J Macromol Sci-Phys B5:721

    Google Scholar 

  9. Sprague BS (1973) J Macromol Sci-Phys B8:157

    Google Scholar 

  10. Cannon SL, McKenna GB, Statton WO (1976) J Polym Sci-Macromol Rev 11:209

    Google Scholar 

  11. Cayrol B, Petermann J (1974) J Polym Sci Polym Phys 12:2169

    Google Scholar 

  12. Miles M, Petermann J, Gleiter H (1976) J Macromol Sci-Phys B12:523

    Google Scholar 

  13. Gohil RM, Petermann J (1979) J Polym Sci Polym Phys 17:525

    Google Scholar 

  14. Adams WW, Yang D, Thomas EL (1986) J Mater Sci 21:2239

    Google Scholar 

  15. Göritz D, Müller FH (1974) Coll Polym Sci 252:862

    Google Scholar 

  16. Göritz D, Müller FH (1975) Coll Polym Sci 253:844

    Google Scholar 

  17. Wool RP (1976) J Polym Sci Polym Phys 14:603

    Google Scholar 

  18. Hosemann R, Loboda-Čačhović J, Čačhović H (1976) Coll Polym Sci 254:782

    Google Scholar 

  19. Čačhović H, Loboda-Čačhović J, Hosemann R, Göritz D (1979) J Macromol Sci Phys B16(1):145

    Google Scholar 

  20. Hashimoto T, Nagatoshi K, Todo A, Kawai H (1976) Polymer 17:1063

    Google Scholar 

  21. Ishikawa H, Numa H, Nagura M (1979) Polymer 20:516

    Google Scholar 

  22. Miles MJ, Baer E (1979) J Mater Sci 14:1254

    Google Scholar 

  23. Moet A, Palley I, Baer E (1980) J Appl Phys 51(10):5175

    Google Scholar 

  24. Chou CJ, Hilter A, Baer E (1986) Polymer 27:369

    Google Scholar 

  25. Ren W (1992) Coll Polym Sci 270:943

    Google Scholar 

  26. Ren W (1992) Coll Polym Sci 270:990

    Google Scholar 

  27. Kramer EJ (1983) Adv Polym Sci 52/53:2

    Google Scholar 

  28. Berger LL, Buckley DJ, Kramer EJ, Brown HR, Bubeck RA (1987) J Polym Sci 25:1679

    Google Scholar 

  29. Kramer EJ, Berger LL (1990) Adv in Polym Sci 91/92:1

    Google Scholar 

  30. Plummer CJG, Donald AM (1990) Macromlecules 23:3929

    Google Scholar 

  31. Göritz D, Kreitmeier S, Wittkop M, J Macromol Sci-Phys, submitted.

  32. Kreitmeier S, Göritz D (1991) Makromol Chem Macromol Symp 41:253

    Google Scholar 

  33. Wittkop M, Kreitmeier S, Göritz D (1995) Acta Polymerica 46:319

    Google Scholar 

  34. Michler GH, private communication

  35. Brandrup J, Immergut EH (1989) Polymer Handbook, Third Edition, New York, London, Sydney, Toronto

  36. Göritz D (1978) Habitationsschrift, Universität Ulm

  37. Fowkes FM (1964) Ind Engr Chem 56:40

    Google Scholar 

  38. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741

    Google Scholar 

  39. Owens DK (1970) J Appl Polym Sci 14:1725

    Google Scholar 

  40. van Krevelen DW (1976) Properties of Polymers, Amsterdam, Oxford, New York

  41. Hosemann R, Čačhović H (1981) Colloid Polym Sci 259:15

    Google Scholar 

  42. Hosemann R, Schulze I (1987) Colloid Polym Sci 265:686

    Google Scholar 

  43. Samuels RJ (1979) J Polym Sci Polym Phys 17:535

    Google Scholar 

  44. Wilke W (1979) Coll Polym Sci 257:101

    Google Scholar 

  45. Prevorsek C, Shama RK, Kwon YD (1982) Polymer Perprints 19:332

    Google Scholar 

  46. Mayer A, Chemistry Department, University of Regensburg, private communication

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreitmeier, S., Wittkop, M., Wagner, T. et al. Investigations of hard elastic polypropylene with respect to the coil-strand-transition model. Colloid Polym Sci 273, 1008–1021 (1995). https://doi.org/10.1007/BF00657667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657667

Key words

Navigation