Skip to main content
Log in

Noise analysis of inward and outward Na+ currents across the apical border of ouabain-treated frog skin

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The passive Na+ transport across the apical membrane of frog skin (Rana catesbeiana) was studied under the following circumstances: (1) control conditions (sulfate Ringer's, K+ depolarised serosal membranes); (2) after blocking the active transport step with ouabain; (3) with an outward oriented Na+ current. The amiloride-induced Na+ current fluctuations were analysed to calculated the density of amiloride blockable channels and the current through one single channel. Despite the large reduction of the macroscopic current by oubain, the single channel current remained unchanged, while the number of amiloride blockable Na+ channels was reduced by a factor of eight. It is concluded from these observations that the earlier described reduction of the permeability of the apical membrane is caused by a decrease of the number of electrically conductive Na+ channels. The outward oriented single channel currents were less than 50% of the currents in the opposite direction. After ouabain, the number of Na+ channels was independent from the current direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkins GL, Nimmo IA (1975) A comparison of seven methods for fitting the Michaelis-Menten equation. Biochem J 149: 775–777

    Google Scholar 

  • Benos DJ, Mandel LJ, Balaban RS (1979) On the mechanism of amiloride-sodium entry site interaction in anuran skin epithelia. J Gen Physiol 73: 307–326

    Google Scholar 

  • Biber TUL (1971) Effects of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin. J Gen Physiol 58: 131–144

    Google Scholar 

  • Chase HS, Al-Awqati Q (1981) Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium. J Gen Physiol 77: 693–712

    Google Scholar 

  • Cooley JW, Lewis PAW, Welch PD (1967) The fast Fourier transform and its applications. IBM Research, RC 1743, pp 15–33

    Google Scholar 

  • Cuthbert AW, Shum WK (1977) Does intracellular sodium modify membrane permeability to sodium ions? Nature 266: 468–469

    Google Scholar 

  • Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139: 715–720

    Google Scholar 

  • Erlij D, Smith MW (1973) Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport. J Physiol (Lond) 228: 221–239

    Google Scholar 

  • Erlij D, Ussing HH (1978) Transport across amphibian skin. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology. Springer, Berlin Heidelberg New York, pp 175–208

    Google Scholar 

  • Farquhar MG, Palade GE (1966) Adenosine triphosphate localization in amphibian epidermis. J Cell Biol 30: 359–379

    Google Scholar 

  • Gögelein H, Van Driessche W (1981) Noise analysis of K+ current through the apical membrane of necturus gallbladder. J Membr Biol 60: 187–198

    Google Scholar 

  • Grinstein S, Erlij D (1978) Intracellular calcium and the regulation of sodium transport in the frog skin. Proc R Soc Lond B 202: 353–360

    Google Scholar 

  • Helman SI, Cox TC, Van Driessche W (1983) Hormonal control of apical membrane Na transport in epithelia: studies with fluctuation analysis. J Gen Physiol (in press)

  • Helman SI, Fisher RS (1977) Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol 69: 571–604

    Google Scholar 

  • Helman SI, Miller D (1971) In vitro techniques for avoiding edge damage in studies of frog skin. Science 173: 146–148

    Google Scholar 

  • Helman SI, Nagel W, Fisher RS (1979) Ouabain on active transepithelial sodium transport in frog skin. J Gen Physiol 74: 105–127

    Google Scholar 

  • Koefoed-Johnsen V (1957) The effect of g-strophanthin (ouabain) on the active transport through the isolated frog skin. Acta Physiol Scand 42 (Suppl 145): 87–88

    Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42: 298–308

    Google Scholar 

  • Leblanc G, Morel F (1975) Na and K movements across the membranes of frog skin epithelial associated with transient current changes. Pflügers Arch 358: 159–177

    Google Scholar 

  • Li JHY, Lindemann B (1980) Passage of Li-ions through amilorideblockable Na+-channels in the apical membrane of frog skin. Pflügers Arch 389: R41

    Google Scholar 

  • Li JHY, Lindemann B (1982) Movement of Na and Li across the apical membrane of frog skin. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 28–35

    Google Scholar 

  • Lindemann B, Van Driessche W (1977) Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover. Science 195: 292–294

    Google Scholar 

  • Lindemann B, Van Driessche W (1978) The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin. In: Hoffmann JF (ed) Membrane transport processes. Raven Press, New York pp 155–178

    Google Scholar 

  • Mills JW, Ernst SA, DiBona DR (1977) Localization of Na+ pump sites in frog skin. J Cell Biol 73: 88–110

    Google Scholar 

  • Nagel W (1980) Rheogenic sodium transport in a tight epithelium, the amphibian skin. J Physiol 302: 281–295

    Google Scholar 

  • Nagel W, Garcia-Diaz JF, Armstrong WMcD (1981) Intracellular ionic activities in frog skin. J Membr Biol 61: 127–134

    Google Scholar 

  • Neumcke B (1975) 1/f membrane noise generated by diffusion processes in unstirred solution layers. Biophys Struct Mech 1: 295–309

    Google Scholar 

  • Neumcke B (1978) 1/f noise in membranes. Biophys Struct Mech 4: 179–199

    Google Scholar 

  • Rick R, Dörge A, von Arnim E, Thurau K (1978) Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. J Membr Biol 39: 313–331

    Google Scholar 

  • Sachs S (1972) Statistische Auswertungsmethoden. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Schoen H, Erlij D (1983) Effects of ouabain on the apical and basolateral membranes of frog skin. Fed Proc 42: 1101

    Google Scholar 

  • Schultz SG (1981) Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”. Am J Physiol 241: F579-F590

    Google Scholar 

  • Shum WK, Fanelli GM (1978) Does intracellular sodium regulate sodium transport across the mucosal surface of frog skin. BBA 512: 593–597

    Google Scholar 

  • Tang J, Helman SI (1983) Electrical parameters of apical and basolateral membranes of R. pipiens depolarized by 100 mM [K]i. Fed Proc 42: 1101

    Google Scholar 

  • Van Driessche W, Lindemann B (1978) Low-noise amplification of voltage and current fluctuations arising in epithelia. Rev Sci Instrum 49: 52–57

    Google Scholar 

  • Van Driessche W, Lindemann B (1979) Concentration dependence of currents through single sodium-selective pores in frog skin. Nature 282: 519–520

    Google Scholar 

  • Van Driessche W, Gogelein H (1980) Attenuation of current and voltage noise signals recorded from epithelia. J Theor Biol 86: 629–648

    Google Scholar 

  • Van Driessche W, Gullentops K (1982) Conductance fluctuations analysis in epithelia. In: Baker PF (ed) Techniques in the life sciences, techniques in cellular physiology, part II, vol P1/II. Elsevier/North Holland, NY

    Google Scholar 

  • Van Driessche W, Zeiske W (1980) Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria). J Membr Biol 56: 31–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Driessche, W., Erlij, D. Noise analysis of inward and outward Na+ currents across the apical border of ouabain-treated frog skin. Pflugers Arch. 398, 179–188 (1983). https://doi.org/10.1007/BF00657149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657149

Key words

Navigation