Skip to main content
Log in

Regimes in the behavior of superconducting microbridges

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have investigated variable-thickness aluminum microbridges that are small with respect to coherence length and penetration depth. The critical current depends linearly on temperature and is proportional to the normal-state conductance, in agreement with theory. The voltage-carrying state shows an excess current of about 0.5I c over a large range of currents. Subharmonic energy gap structure is clearly present. The differential resistance observed corresponds with an effective length of about 2 µm, a value which is in agreement with three-dimensional diffusion for a diffusion length of 100 µm (this diffusion length is determined in experiments with long aluminum microstrips). An intrinsic upper frequency limit for the Josephson oscillation is not found. It is argued that the known relaxation times of the order parameter are not limiting. The results are in disagreement with the RSJπ model, introduced by Jensen and Lindelof. We also investigated tin microbridges and have found that at low temperatures, flux flow determines the voltage. The differences between the results on tin and aluminum microbridges seem to be due to the fact that in tin the bridge sizes are still too large with respect to coherence length and penetration depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson and A. H. Dayem,Phys. Rev. Lett. 13, 195 (1964).

    Google Scholar 

  2. H. A. Notarys and J. E. Mercereau,Physica 55, 424 (1971).

    Google Scholar 

  3. W. J. Skocpol, M. R. Beasley, and M. Tinkham,J. Low Temp. Phys. 16, 145 (1974).

    Google Scholar 

  4. P. G. de Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

    Google Scholar 

  5. L. G. Aslamazov and A. I. Larkin,JETP Lett. 9, 87 (1969).

    Google Scholar 

  6. V. Ambegaokar and A. Baratoff,Phys. Rev. Lett. 10, 486 (1963);11, 104 (1963).

    Google Scholar 

  7. P. V. Christiansen, E. B. Hansen, and C. J. Sjöström,J. Low Temp. Phys. 4, 349 (1971).

    Google Scholar 

  8. P. E. Gregers-Hansen, M. T. Levinsen, and G. Fog Pedersen,J. Low Temp. Phys. 7, 99 (1972).

    Google Scholar 

  9. T. M. Klapwijk and T. B. Veenstra,Phys. Lett. 47A, 351 (1974).

    Google Scholar 

  10. Proceedings of the Applied Superconductivity Conference, Argonne 1974, IEEEMAG11, 85–890 (1975).

  11. J. E. Mooij and P. Dekker, private communication.

  12. I. O. Kulik and A. N. Omel'yanchuk,Sov. Phys.—JETP 41, 1071 (1976).

    Google Scholar 

  13. A. Baratoff, J. A. Blackburn, and B. B. Schwartz,Phys. Rev. Lett. 24, 1096 (1970) 1738E.

    Google Scholar 

  14. L. D. Jackel, J. N. Warlaumont, T. D. Clark, J. C. Brown, R. A. Buhrman, and M. T. Levinsen,Appl. Phys. Lett. 28, 353 (1976).

    Google Scholar 

  15. Y. Song and G. I. Rochlin,Phys. Rev. Lett. 29, 416 (1972).

    Google Scholar 

  16. B. D. Josephson,Adv. Phys. 14, 419 (1965).

    Google Scholar 

  17. K. K. Likharev,Sov. Phys.—JETP 34, 906 (1972).

    Google Scholar 

  18. L. G. Aslamazov and A. I. Larkin,Sov. Phys.—JETP 41, 381 (1975).

    Google Scholar 

  19. B. S. Chandrasekhar, I. J. Dinewitz, and D. E. Farrell,Phys. Lett. 20, 321 (1966).

    Google Scholar 

  20. P. Tholfsen and H. Meissner,Phys. Rev. 185, 653 (1969).

    Google Scholar 

  21. J. P. Burger and D. Saint-James, inSuperconductivity, Vol. II, R. D. Parks, ed. (Dekker, New York, 1969), Chapter 16.

    Google Scholar 

  22. T. J. Rieger, D. J. Scalapino, and J. E. Mercereau,Phys. Rev. B 6, 1734 (1972).

    Google Scholar 

  23. K. K. Likharev and L. A. Yakobson,Sov. Phys.—JETP 41, 570 (1976).

    Google Scholar 

  24. A. B. Pippard, J. G. Shepherd, and D. A. Tindall,Proc. Roy. Soc. 324A, 17 (1971).

    Google Scholar 

  25. P. E. Gregers-Hansen, E. Hendricks, M. T. Levinsen, and G. Fog Pedersen, inProc. 1972 Appl. Superc. Conference (IEEE, New York, 1972), p. 597.

    Google Scholar 

  26. Proceedings of the International Conference on the Emission and Detection of Electromagnetic Radiation with Josephson Junctions, Perros-Guirec, France, 1973,Rev. Phys. Appl. 9, 1–314 (1974).

    Google Scholar 

  27. H. Højgaard-Jensen and P. E. Lindelof,J. Low Temp. Phys. 23, 469 (1976).

    Google Scholar 

  28. Y. Song,J. Appl. Phys. 47, 2651 (1976).

    Google Scholar 

  29. R. Y. Chiao, M. J. Feldman, H. Ohta, and P. T. Parrish,Rev. Phys. Appl. 9, 183 (1974).

    Google Scholar 

  30. J. E. Mooij, C. A. Gorter, and J. E. Noordam,Rev. Phys. Appl. 9, 173 (1974).

    Google Scholar 

  31. E. Fawcett, inThe Fermi Surface, Proceedings of an International Conference, Cooperstown, New York, 1960, W. A. Harrison and M. E. Webb, eds. (Wiley, New York, 1960), p. 201.

  32. T. M. Klapwijk and J. E. Mooij,Phys. Lett. 57A, 97 (1976).

    Google Scholar 

  33. S. B. Kaplan, C. C. Chi, D. N. Langenberg, J. J. Chang, S. Jafarey, and D. J. Scalapino,Phys. Rev. B 14, 4854 (1976).

    Google Scholar 

  34. W. J. Skocpol, M. R. Beasley, and M. Tinkham,J. Appl. Phys. 45, 4054 (1974).

    Google Scholar 

  35. M. Strongin, O. F. Kammerer, and A. Paskin,Phys. Rev. Lett. 14, 949 (1965).

    Google Scholar 

  36. D. G. Naugle, R. E. Glover, and W. Moorman,Physica 55, 250 (1971).

    Google Scholar 

  37. L. D. Jackel, W. H. Henkels, J. M. Warlaumont, and R. A. Buhrman,Appl. Phys. Lett. 29, 214 (1976).

    Google Scholar 

  38. M. T. Levinsen,Appl. Phys. Lett. 24, 247 (1974).

    Google Scholar 

  39. L. E. Hasselberg, M. T. Levinsen, and M. R. Samuelsen,J. Low Temp. Phys. 21, 567 (1975).

    Google Scholar 

  40. A. F. G. Wyatt, inTunneling Phenomena in Solids, F. Burstein and S. Lundquist, eds. (Plenum, New York, 1969), p. 541.

    Google Scholar 

  41. J. Clarke,Phys. Rev. B 4, 2963 (1971).

    Google Scholar 

  42. J. G. Shepherd,Proc. R. Soc. London A 326, 421 (1972).

    Google Scholar 

  43. J. J. Hauser,Phys. Rev. B 10, 2792 (1974).

    Google Scholar 

  44. M. T. Jahn and Y. H. Kao,J. Low Temp. Phys. 13, 175 (1973).

    Google Scholar 

  45. B. S. Deaver, B. G. Boone, and R. Rifkin, preprint.

  46. C. Guthmann, J. Maurer, M. Belin, J. Bok, and A. Libchaber,Phys. Rev. B 11, 1909 (1975).

    Google Scholar 

  47. A. Baratoff and L. Kramer, paper presented at the International Conference on Superconducting Quantum Devices, Berlin, October 5–8, 1976.

  48. R. Peters and H. Meissner,Phys. Rev. Lett. 30, 965 (1973).

    Google Scholar 

  49. I. Schuller and K. E. Gray,Phys. Rev. Lett. 36, 429 (1976).

    Google Scholar 

  50. R. E. Harris,Phys. Rev. B 13, 3818 (1976).

    Google Scholar 

  51. F. J. Rachford, S. A. Wolf, M. Nisenoff, and C. Y. Huang,Phys. Rev. Lett. 35, 305 (1975).

    Google Scholar 

  52. T. D. Clark and P. E. Lindelof,Phys. Rev. Lett. 37, 368 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klapwijk, T.M., Sepers, M. & Mooij, J.E. Regimes in the behavior of superconducting microbridges. J Low Temp Phys 27, 801–835 (1977). https://doi.org/10.1007/BF00655709

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655709

Keywords

Navigation