Skip to main content
Log in

A Study of Ultra-Thin Superconducting Films at High Bias Currents in Different Cooling Environments

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The influence of the cooling method on thermal stability is a non-trivial aspect for superconducting material to be used in several applications, for example, in photon detection. Indeed, a wasteful cooling can induce quenches in the device that can lead to false counts. So far, the efficient cooling has been realized by immersion of the superconducting device in a liquid He bath. However, cheaper cryogen-free (CF) cooling techniques are now commercially available, as well as cryocoolers are becoming the only way to obtain a cooling environment in the liquid He shortage. Here we consider three different cooling methods: one is by liquid He in a standard cryostat and the other two are a dynamic or a static He gas cooling in a CF cryostat. Then, we are able to evaluate the performance of the cooling method by the impact on current-voltage curves at very high bias currents. In particular, we acquire current-voltage characteristics on ultra-thin microbridges made by two different superconducting materials commonly used in detectors fabrication, which are NbN and NbTiN. Here, the flux-flow instability (FFI) phenomenon is used as a tool to determine the influence of the three different cooling techniques on the voltage stability of the devices under current biasing. It results that the CF cooling method has performance comparable to liquid He bath. This finding supports the spread of the CF technique for applications, and it validates the FFI as a tool to test superconducting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tinkham, M.: Introduction to superconductivity, 2nd edn. McGraw-Hill (1996)

  2. Abrikosov, A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys.—JETP. 5, 1174–1181 (1957)

    Google Scholar 

  3. Martucciello, N., Giubileo, F., Grimaldi, G., Corato, V.: Introduction to the focus on superconductivity for energy. Supercond. Sci. Technol. 28(7), (2015)

  4. Romano, P., Riccio, M., Guarino, A., Martucciello, N., Grimaldi, G., Leo, A., Nigro, A.: Electron doped superconducting cuprates for photon detectors. Measurement. 122, 502–506 (2018)

    Article  Google Scholar 

  5. Natarajan, C.M., Tanner, M.G., Hadfield, R.H.: Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), (2012)

  6. Ekin, J.W.: Experimental techniques for low-temperature measurements. Oxford University Press (2006)

  7. Balshaw, N.H.: Practical cryogenics, 2nd edn. Oxford Instruments Superconductivity Limited (2001)

  8. Radebaugh, R.: Refrigeration for superconductors. Proc. IEEE. 92(10), 1719–1734 (2004)

    Article  Google Scholar 

  9. Evans, B., Down, R., Keeping, J., Kirichek, O., Bowden, Z.: Cryogen-free low temperature sample environment for neutron scattering based on pulse tube refrigeration. Meas. Sci. Technol. 19, 034018 (2008)

    Article  ADS  Google Scholar 

  10. Larkin, A.I., Ovchinnikov, Y.N.: Nonlinear conductivity of superconductors in the mixed state. Sov. Phys.—JETP. 41(5), 960–965 (1975)

    ADS  Google Scholar 

  11. Liang, M., Kunchur, M.N.: Phys. Rev. B: Vortex instability in molybdenum-germanium superconducting films. Phys. Rev. B. 82, 144517 (2010)

    Article  ADS  Google Scholar 

  12. Klein, W., Huebener, R.P., Gauss, S., Parisi: Nonlinearity in the flux-flow behavior of thin-film superconductors J. J. Low. Temp. Phys. 61, 413–432 (1985)

    Article  ADS  Google Scholar 

  13. Doettinger, S.G., Huebener, R.P., Gerdemann, R., Kühle, A., Anders, S., Träuble, T.G., Villégier, J.C.: Electronic instability at high flux-flow velocities in high-Tc superconducting films. Phys. Rev. Lett. 73, 1691 (1994)

    Article  ADS  Google Scholar 

  14. Kunchur, M.N.: Unstable flux flow due to heated electrons in superconducting films. Phys. Rev. Lett. 89, 137005 (2002)

    Article  ADS  Google Scholar 

  15. Vodolazov, D.Y., Peeters, F.M.: Rearrangement of the vortex lattice due to instabilities of vortex flow. Phys. Rev. B. 76, 014521 (2007)

    Article  ADS  Google Scholar 

  16. Bezuglyj, A., Shklovskij, V.: Effect of self-heating on flux flow instability in a superconductor near Tc. Phys. C. Supercond. 202(3/4), 234–242 (1992)

    Article  ADS  Google Scholar 

  17. Ferro, G., Veira, J.A., Vidal, F.: Transition to the normal state induced by high current densities in YBa2Cu3O7−δ thin films: a thermal runaway account. Phys. Rev. B. 78, 094512 (2008)

    Article  ADS  Google Scholar 

  18. Xiao, Z.L., Voss-de Haan, P., Jakob, G., Adrian, H.: Voltage jumps in current-voltage characteristics of Bi2Sr2CaCu2O8+δ superconducting films: evidence for flux-flow instability under the influence of self-heating. Phys. Rev. B. 57(R), R736 (1998)

    Article  ADS  Google Scholar 

  19. Leo, A., Marra, P., Grimaldi, G., Citro, R., Kawale, S., Bellingeri, E., Ferdeghini, C., Pace, S., Nigro, A.: Competition between intrinsic and extrinsic effects in the quenching of the superconducting state in Fe(Se,Te) thin films. Phys. Rev. B. 93, 054503 (2016)

    Article  ADS  Google Scholar 

  20. Bezuglyj, A.I., Shklovskij, V.A., Vovk, R.V., Bevz, V.M., Huth, M., Dobrovolskiy, O.V.: Local flux-flow instability in superconducting films near Tc. Phys. Rev. B. 99, 174518 (2019)

    Article  ADS  Google Scholar 

  21. Leo, A., Grimaldi, G., Citro, R., Nigro, A., Pace, S., Huebener, R.P.: Phys. Rev. B. 84, 014536 (2011)

    Article  ADS  Google Scholar 

  22. Grimaldi, G., Leo, A., Nigro, A., Pace, S., Braccini, V., Bellingeri, E., Ferdeghini, C.: Angular dependence of vortex instability in a layered superconductor: the case study of Fe(Se,Te) material. Sci. Rep. 8, 4150 (2018)

    Article  ADS  Google Scholar 

  23. Grimaldi, G., Leo, A., Nigro, A., Pace, S., Cirillo, C., Attanasio, C.: Thickness dependence of vortex critical velocity in wide Nb films. Physica C. 468, 765–768 (2008)

    Article  ADS  Google Scholar 

  24. Grimaldi, G., Leo, A., Sabatino, P., Carapella, G., Nigro, A., Pace, S., Moshchalkov, V.V., Silhanek, A.V.: Speed limit to the Abrikosov lattice in mesoscopic superconductors. Phys. Rev. B. 92(02451b), (2015)

  25. Leo, A., Nigro, A., Grimaldi, G.: Critical phenomenon of vortex motion in superconductors: vortex instability and flux pinning. Fiz. Nizk. Temp. 46(4), 452 (2020)

    Google Scholar 

  26. Grimaldi, G., Leo, A., Avitabile, F., Martucciello, N., Galluzzi, A., Polichetti, M., Pace, S., Nigro, A.: Vortex lattice instability at the nanoscale in a parallel magnetic field. Nanotechnology. 30(42), (2019)

  27. Leo, A., Avitabile, F., Martucciello, N., Villegier, J.-C., Pace, S., Nigro, A., Grimaldi, G.: Tuning the resistive switching of superconducting films by geometry effects. IEEE Trans. Appl. Supercond. 28(7), (2018)

  28. Grimaldi, G., Leo, A., Nigro, A., Silhanek, A.V., Verellen, N., Moshchalkov, V.V., Milošević, M.V., Casaburi, A., Cristiano, R., Pace, S.: Appl. Phys. Lett. 100, (2012)

  29. Silhanek, A.V., Leo, A., Grimaldi, G., Berdiyorov, G.R., Milošević, M.V., Nigro, A., Pace, S., Verellen, N., Gillijns, W., Metlushko, V., Ilić, B., Zhu, X., Moshchalkov, V.V.: New J. Phys. 14, (2012)

  30. Shklovskij, V.A.: Pinning effects on hot-electron vortex flow instability in superconducting films. Phys. C. Supercond. 538, 20–26 (2017)

    Article  ADS  Google Scholar 

  31. Dauler E., Grein M., Kerman A., Marsili F., Miki S., Nam S. W, Shaw M., Terai H., Verma V.: Review of superconducting nanowire single-photon detector system design options and demonstrated performance. Opt. Eng. 53(8), 081907 (2014)

  32. Sandhu, A.: Super sensors. Nat. Nanotechnol. (2008). https://doi.org/10.1038/nnano.2008.331

  33. Dorenbos, S.N., Reiger, E.M., Perinetti, U., Zwiller, V., Zijlstra, T., Klapwijk, T.M.: Low noise superconducting single photon detectors on silicon. Appl. Phys. Lett. 93, 131101 (2008)

    Article  ADS  Google Scholar 

  34. Grimaldi, G., Leo, A., Nigro, A., Pace, S., Angrisani, A.A., Attanasio, C.: Flux flow velocity instability in wide superconducting films. J. Phys. Conf. Ser. 97, 012111 (2008)

    Article  Google Scholar 

  35. Villegier, J.C., Bouat, S., Cavalier, P., Setzu, R., Espiaude, L.R., Jorel, C., Odier, P., Guillet, B., Mechin, L., Chauvat, M.P., Ruterana, P.: Epitaxial growth of sputtered ultra-thin NbN layers and junctions on sapphire. IEEE Trans. Appl. Supercond. 19(3), 3375–3378 (2009)

    Article  ADS  Google Scholar 

  36. Shy, Y.M., Toth, L.E., Somasundaram, R.: Superconducting properties, electrical resistivities, and structure of NbN thin films. J. Appl. Phys. 44(12), 5539–5545 (1973)

    Article  ADS  Google Scholar 

  37. Shiino, T., Todoroki, K., Minh, N.D., Jiang, L., Shiba, S., Uzawa, Y., Maezawa, H., Sakai, N., Yamamoto, S.: Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer. Supercond. Sci. Technol. 23, (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Martucciello.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leo, A., Grimaldi, G., Martucciello, N. et al. A Study of Ultra-Thin Superconducting Films at High Bias Currents in Different Cooling Environments. J Supercond Nov Magn 33, 1911–1916 (2020). https://doi.org/10.1007/s10948-020-05497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05497-z

Keywords

Navigation