Skip to main content
Log in

Analytical ultracentrifugation of gels

  • Leading Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Analytical ultracentrifugation is a powerful tool for the determination of thermodynamic, elastic and molecular parameters and structural properties of gels. Although gelling systems are an important class of mixtures, only a few researchers have studied their properties by means of analytical ultracentrifugation. This might be due to the extreme experimental difficulties concerning the detection of the polymer concentration in turbid gels, adhesion problems, etc. Nevertheless, the potential benefit of such experiments has led to several investigations in this field during recent years. These resulted in the introduction of a theoretical treatment of the sedimentation of even multicomponent gels and an improved experimental set-up which allows the characterization of a gel/solvent system in a limited concentration range in a single sedimentation equilibrium experiment. For microgels prepared and crosslinked in emulsions, an interesting rapid sedimentation velocity technique is available for their characterization. This review article describes the capabilities of the experimental method and what has been achieved with it in the past. Furthermore, it gives an outlook on applications which may be possible in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinsken H, presented at the 9th Symposium on Analytical Ultracentrifugation, March 1995 in Berlin-Buch (to be published)

  2. Steensgaard J, Humphries S, Spragg P (1992) Measurement of sedimentation coefficients' in Rickwood D. (ed.); Preparative Centrifugation, A practical Approach; Oxford University Press 193

  3. Mc Bain JW, Stuewer RF (1936) Anwendungen des einfachen luftgetriebenen Zentrifugenkreisels auf kolloidchemische Probleme Kolloid-Zeitschrift 74 Heft 1: 10–16

    Google Scholar 

  4. Svedberg T, Pedersen KO (1940) The Ultracentrifuge. Oxford University Press, London pp 29–33 or Svedberg T, Pedersen KO (1940) Die Ultrazentrifuge. Steinkopff Verlag Dresden 26–29

    Google Scholar 

  5. Posnjak E, Freundlich HS (1912) 442–456 in the publication Über den Quellungsdruck; Kolloidchem-Beih 3:417–456

    Google Scholar 

  6. Shaskoua VE, van Holde KE (1958) Graft Copolymers: Synthesis and Characterization; J Polymer Sci 28:395–411

    Google Scholar 

  7. Shaskoua VE, Beaman RG (1958) Microgel: An Idealized Polymer Molecule; J Polymer Sci 33:101–117

    Google Scholar 

  8. Kegeles G, Sia CL (1963) An ultracentrifugal field relaxation method for molecular weights, Biochemistry 2:906–909

    Google Scholar 

  9. Buchdahl R, Ende HA, Peebles LH (1963) Detection of structureal differences in polymers by density gradient ultracentrifugation II: Detection of Microgel; J Polymer Sci Part C No. 1:143–152

    Google Scholar 

  10. Johnson P (1964) A sedimentation study on gel systems; Proc Royal Soc A 278:527–542

    Google Scholar 

  11. Borchard W (1975) Zur Thermodynamik von elastischen Mischphasen; Habilitation, Clausthal 108

  12. Cölfen H, Harding SE (1994) unpublished

  13. Johnson P, Metcalfe JC (1963) Sedimentation studies of gelatin gels; J Photograph Sci 11:214–224

    Google Scholar 

  14. Flory PJ, Garrett RR (1958) Phase transitions in collagen and gelatin systems; J Am Chem Soc 80:4836–4845

    Google Scholar 

  15. Metcalfe JC (1965) A physico-chemical study of gelatin gels. Phd thesis, Cambridge

  16. King RW (1967) Physical and Chemical Studies on Gelatin Gels and Sols. Phd thesis, Cambridge

  17. Johnson P, Metcalfe JC (1967) Physicochemical studies on gelatin gels from soluble and insoluble collagens. Eur Polym J 3:423–447

    Google Scholar 

  18. Johnson P, King RW (1968) Sedimentation studies on gelatin gels; J Photograph Sci 16:82–88

    Google Scholar 

  19. Kegeles G (1968) Reversible pressure-induced gel formation in T-2 bacteriophage DNA, Fed Proc 27:799

    Google Scholar 

  20. Johnson P (1968) Physicochemical studies on strongly interacting systems in Solution properties of natural polymers; Chem Soc Special publication No. 23, Burlington House, London 243–262

    Google Scholar 

  21. Johnson P (1971) Velocity and equilibrium aspects of the sedimentation of agar gels; J Photograph Sci 19:49–54

    Google Scholar 

  22. Johnson P (1972) Velocity and equilibrium aspects of the sedimentation of agar gels in Cox RJ (Ed.) Photographic gelatin; Academic press London, New York 13–27

    Google Scholar 

  23. Cölfen H, Borchard W (1994) Determination of the partial specific volumes of thermoreversible gelatin/water and κ-carrageenan/water gels; Makromol Chem Phys 195:1165–1175

    Google Scholar 

  24. Johnson P, Rainsford KD (1972) The physical properties of mucus: Preliminary observations on the sedimentation behaviour of porcine gastric mucus; Biochim Biophys Acta 286:72–78

    Google Scholar 

  25. Chun PW, Richard AJ, Herschler WP, Krista ML (1973) Ultracentrifugal field relaxation behavior off d-DNA; Biopolymers 12:1931–1935

    Google Scholar 

  26. Borchard W (1975) Über das Quellungsverhalten von Polystyrol verschiedener Netzwerkdichte in Cyclohexan. Progr Colloid Polym Sci 57:39–47

    Google Scholar 

  27. Bloomfield VA (1976) Ultracentrifugal compression of gels. Biopolymers 15: 1243–1249

    Google Scholar 

  28. Babskij VG, S'edin AA (1977) Investigation of gel forming structures by means of Analytical Ultracentrifugation. Khim Biol Nauki 10:926–929

    Google Scholar 

  29. Brian AA, Frisch HL, Lerman LS (1981) Thermodynamics and equilibrium sedimentation analysis of the close approach of DNA molecules and a molecular ordering transition; Biopolymers 20:1305–1328

    Google Scholar 

  30. Richard AJ (1983) Centrifugal field relaxation and ionic strength effects on calf thymus DNA gels; Biopolymers 22:935–943

    Google Scholar 

  31. Scholte TG (1970) Determination of Thermodynamic Parameters of Polymer-Solvent Systems from Sedimenation-Diffusion Equilibrium in the Ultracentrifuge; J Polymer Sci 8, Part A2 841–868

    Google Scholar 

  32. Trohalaki S, Brian AA, Frisch HL, Lerman LS (1984) Scaling of the equilibrium sedimentation distribution in dense DNA solutions Biophys J 45:777–782

    Google Scholar 

  33. Richard AJ (1984) The effects of alkalimetal chlorides and of spermidine and spermine on the swelling pressures of DNA gels in the ultracentrifuge; Biopolymers 23:1307–1313

    Google Scholar 

  34. Richard AJ, Westkaemper RB (1986) Scaled particle theory applied to gels of high molecular weight DNA in the ultracentrifuge; Biopolymers 25:2017–2026

    Google Scholar 

  35. Lange H (1986) Determination of the degree of swelling and crosslinking of extremely small polymer gel quantities by Analytical Ultracentrifugation, Colloid Polym Sci 264:488–493

    Google Scholar 

  36. Flory PJ, Rehner JR (1943) Statistical mechanics of cross-linked polymer networks II: Swelling. J Chem Phys 11:521–526

    Google Scholar 

  37. Holtus G, Borchard W (1989) Swelling pressure equilibrium of physical networks in the field of an analytical ultracentrifuge. Colloid Polym Sci 267: 1133–1138

    Google Scholar 

  38. Holtus G (1990) Untersuchung der Quellungsdruckgleichgewichte von wäßrigen Gelatine-Gelen in einer Analytischen Ultrazentrifuge. Phd thesis, Duisburg

  39. Floßdorf J, Schillig H, Schindler KP (1978) Intermittierende Laserbeleuchtung für die Interferenz und Schlierenoptik einer analytischen Ultrazentrifuge; Makromol Chem 179:1617–1621

    Google Scholar 

  40. Klodwig U, Mächtle W (1989) On-line digitization of Schlieren pictures inside the analytical ultracentrifuge; Colloid Polym Sci 267:1117–1126

    Google Scholar 

  41. Borchard W, Luft B, Reutner P (1986) Mixed Crystal Formation and Glassy Solidification in the System Gelatin-Water; J Photograph Sci 34:132–137

    Google Scholar 

  42. Cölfen H (1991) Untersuchung der thermoreversiblen Gelierung mit Hilfe der Analytischen Ultrazentrifuge; Diploma thesis, Duisburg

  43. Borchard W (1991) Swelling pressure equilibrium of swollen crosslinked systems in an external field. I: Theory; Progr Colloid Polym Sci 86:84–91

    Google Scholar 

  44. Holtus G, Cölfen H, Borchard W (1991) Swelling pressure equilibrium of swollen crosslinked systems in an external field. II: The determination of molecular parameters of gelatin/water gels from the swelling pressure-concentration curves; Progr Colloid Polym Sci 86:92–101

    Google Scholar 

  45. Flory PJ (1942) Thermodynamics of high polymer solutions J Chem Phys 10:51–61

    Google Scholar 

  46. Huggins ML (1943) Thermodynamic properties of solutions of high polymers: The empirical constant in the activity equation; Ann NY Acad Sci 44:431–443

    Google Scholar 

  47. Pouradier J, Venet AM (1950) The structure of gelatin II: Variation of the physical and mechanical properties with molecular weight J Chim Phys 47:391–398

    Google Scholar 

  48. Keese AS (1978) Untersuchungen der thermodynamischen Eigenschaften von wäßrigen Gelatinelösungen mit Hilfe osmotischer Messungen; Diplomarbeit, Clausthal, 49

  49. Pezron I, Herning T, Djabourov M, Leblond J (1990) Scattering from a Biopolymer Solution in the Sol and Gel States: The Gelatin Example In Burchard W and Ross Murphy SB (Eds.) Physical Networks, Polymers and Gels, Elsevier Science Publishers Ltd., London, New York 231–252

    Google Scholar 

  50. Cölfen H, Borchard W (1994) Soluble parts in gelatin/water gels; Acta Polymer 45:325–329

    Google Scholar 

  51. Cölfen H, Borchard W (1991) Swelling pressure equilibrium of swollen crosslinked systems in an external field. III: Unsolved problems concerning the systems gelatin/water and κ-carrageenan/water; Progr Colloid Polym Sci 86:102–110

    Google Scholar 

  52. Müller HG, Schmidt A, Kranz D (1991) Determination of the degree of swelling and crosslinking of latex particles by Analytical Ultracentrifugation; Progr Colloid Polym Sci 86:70–75

    Google Scholar 

  53. Mächtle W (1992) Analysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques in Harding SE, Rowe AJ and Horton JC. Analytical Ultracentrifugation in Biochemistry and Polymer Science; Royal Society of Chemistry, Cambridge, 147–175

    Google Scholar 

  54. Borchard W, Cölfen H (1992) Characterization of thermoreversible gels by means of sedimentation equilibria; Macromol Chem. Macromol Symp 61:143–164

    Google Scholar 

  55. Michalczyk A (1993) Zeitabhängigkeit des komplexen Schubmoduls und der optischen Drehung während der Gelierung des Systems Gelatine/Wasser im Zusammenhang mit kritischen. Exponenten; Phd thesis, Duisburg, Verlag Köster, Berlin 1994

    Google Scholar 

  56. Hinsken H (1992) Untersuchung der thermoreversiblen Gelierung des Systems κ-Carrageenan/Wasser mit Hilfe der Analytischen Ultrazentrifuge; Diploma thesis, Duisburg

  57. Gilbert GA (1959) Sedimentation and electrophoresis of interacting substances I: Idealized boundary shape for a single substance aggregating reversibly; Proc Roy Soc A 250:377–388

    Google Scholar 

  58. Gilbert GA, Jenkins RCL (1959) Sedimentation and electrophoresis of interacting substances II: Asymptotic boundary shape for two substances interacting reversibly; Proc Roy Soc A253:420–437

    Google Scholar 

  59. De Gennes PG (1975) Scaling concepts in Polymer Physics, Cornell University Press, London

    Google Scholar 

  60. Hinsken H, Borchard W (1995) Continuous swelling pressure equilibria of the system κ-carrageenan/water; Colloid Polym Sci 273:913–925

    Google Scholar 

  61. Borchard W (1994) The sedimentation diffusion equlibrium of a ternary gel; Progr Colloid Polym Sci 94:82–89

    Google Scholar 

  62. Boyer RF, Spencer RS (1948) Some thermodynamic properties of slightly crosslinked Styrene-Divinylbenzene gels; J Polym Sci 3:97–127

    Google Scholar 

  63. Yphantis DA (1964) Equilibrium ultracentrifugation of dilute solutions; Biochemistry 3:297–317

    Google Scholar 

  64. Cölfen H, Borchard W (1994) A modified experimental set-up for sedimentation equilibrium experiments with gels. Part 1: The instrumentation; Progr Colloid Polym Sci 94:90–101

    Google Scholar 

  65. Cölfen H, Borchard W (1994) A modified experimental set-up for sedimentation equilibrium experiments with gels. Part 2: Technical developments; Anal Biochem 219:321–334

    Google Scholar 

  66. Ortlepp B, Panke D (1991) Analytical ultracentrifuges with multiplexer and video systems for measuring particle size and molar mass distributions; Progr Colloid Polym Sci 86:57–61

    Google Scholar 

  67. Yphantis DA (1960) Rapid determination of molecular weights of peptides and proteins; Ann NY Acad Sci 88: 586–601

    Google Scholar 

  68. Cölfen H (1993) Bestimmung thermodynamischer und elastischer Eigenschaften von Gelen mit Hilfe von Sedimentationsgleichgewichten in einer Analytischen Ultrazentrifuge am Beispiel des Systems Gelatine/Wasser; Phd thesis, Duisburg, 1. Auflage Verlag Köster, Berlin 1994

    Google Scholar 

  69. Schuck P (1994) Simultaneous radial and wavelength analysis with the Optima XL-A analytical ultracentrifuge; Progr Colloid Polym Sci 94:1–13

    Google Scholar 

  70. Borchard W, Hermanns B (1984) A new Temperature Measuing Device for Rotating Systems; Angew Makromol Chem 128:189–201

    Google Scholar 

  71. Cölfen H, Holtus G, Borchard W (1993) Multifunctional cell for measurements of temperature, distance, and refractive index as for determining optical calibration factors in rotating systems, Rev Sci Instrum 64(10):2999–3005

    Google Scholar 

  72. Cölfen H, Borchard W (1995) Influence of soluble parts in gelatin/water gels on their network structure in an ultracentrifugal field; Makromol Chem Phys 196 in press

  73. Hinsken H, Selic E, Borchard W (1995) Formation of reversible concentration gradients during the centrifugation of gels; Progr Colloid Polym Sci 99:154–162

    Google Scholar 

  74. Mächtle W, Ley G, Streib J (1995) Studies of microgel formation in aqueous and organic solvents by light scattering and analytical ultracentrifugation; Progr Colloid Polym Sci 99:144–153

    Google Scholar 

  75. Flory PJ (1953) Principles of Polymer Chemistry; Cornell University Press, Ithaka, New York 576

    Google Scholar 

  76. Rowe AJ, Wynne Jones S, Thomas DG, Harding SE (1992) Methods for Off-line Analysis of Sedimentation Velocity and Sedimentation Equilibrium Patterns; In: Harding SE, Rowe AJ, Horton JC (Eds.) Analytical Ultracentrifugation in Biochemistry and Polymer Science; The Royal Society of Chemistry, Cambridge 49–62

    Google Scholar 

  77. Tombs MP, Harding SE (1988) Protein transport processes in the water-water interface in incompatible two phase systems In: Fisher D, Sutherland IA (Eds.) Advances in Separations using Aqueous Phase Systems in Cell Biology and Biotechnology; Plenum Press, New York 229–232

    Google Scholar 

  78. Harding SE, Tombs MP (1989) Protein diffusion through interfaces In: Schwenke KD, Raab B (Eds.) Interactions in Protein Systems, Abhandlungen der Akademie der Wissenschaften der DDR, Akademie-Verlag, Berlin (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. W. Borchard on occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cölfen, H. Analytical ultracentrifugation of gels. Colloid Polym Sci 273, 1101–1137 (1995). https://doi.org/10.1007/BF00653080

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00653080

Key words

Navigation