Skip to main content
Log in

Structure determination of zinc iodide complexes formed in aqueous solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Structures of the complexes formed in aqueous solutions between zinc(II) and iodide ions have been determined from large-angle X-ray scattering, Raman and far-IR measurements. The coordination in the hydrated Zn2+ hexaaqua ion and the first iodide complex, [ZnI]+, is octahedral, but is changed into tetrahedral in the higher complexes, [ZnI2(H2O)2], [ZnI3(H2O)] and [ZnI4]2−. The Zn-I bond length is 2.635(4)Å in the [ZnI4]2− ion and slightly shorter, 2.592(6)Å, in the two lower tetrahedral complexes. In the octahedral [ZnI(H2O)5]+ complex the Zn-I bond length is 2.90(1)Å. The Zn-O bonding distances in the complexes are approximately the same as that in the hydrated Zn2+ ion, 2.10(1)Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Goggin, G. Johansson, M. Maeda, and H. Wakita,Acta Chem. Scand. Ser. A 38, 625 (1984).

    Google Scholar 

  2. E. Kálmán, I. Serke, G. Pálinkás, G. Johansson, G. Kabisch, M. Meada, and H. Ohtaki,Z. Naturforsch. 38a, 225 (1983).

    Google Scholar 

  3. L. G. Sillén and A. E. Martell,Stability Constants of Metal-Ion Complexes, Special Publ. Nos. 17 and 25 (The Chemical Society, London 1964 and 1971); E. Högfeldt,Stability Constants of Metal-Ion Complexes, Part A, Inorganic Ligands, IUPAC Chemical Data Series, No. 21, (Pergamon, Oxford 1982).

    Google Scholar 

  4. M.-L. Delwaulle,Compt. Rend. 240, 2132 (1955).

    Google Scholar 

  5. G. H. Jeffrey, J. Bassett, J. Mendham, and R. C. Denney,Vogel's Textbook of Quantitative Analysis, 5th edn., (Longman, Harlow, U.K., 1989).

    Google Scholar 

  6. J. T. Bulmer, D. E. Irish, and L. Ödberg,Can. J. Chem. 53, 3806 (1975).

    Google Scholar 

  7. M. M. Yang, D. A. Crerar, and D. E. Irish,J. Solution Chem. 17, 751 (1988).

    Google Scholar 

  8. J. W. Macklin and R. A. Plane,Inorg. Chem. 9, 821 (1970).

    Google Scholar 

  9. G. Johansson and M. Sandström,Chem. Scr. 4, 195 (1973).

    Google Scholar 

  10. Y. Tamura, T. Yamaguchi, I. Okada, and H. Ohtaki,Z. Naturforsch. 42a, 367 (1987).

    Google Scholar 

  11. H. Follner and B. Brehler,Acta Crystallogr. B. 26, 1679 (1970).

    Google Scholar 

  12. S. Ahrland, L. Kullberg, and R. Portanova,Acta Chem. Scand. Ser. A32, 251 (1978).

    Google Scholar 

  13. K. Hasebe, T. Asahi, and K. Gesi,Acta Crystallogr. C 46, 218 (1990).

    Google Scholar 

  14. R. Holinsky and B. Brehler,Acta Crystallogr. B 26, 1915 (1970).

    Google Scholar 

  15. H. Ohtaki, T. Yamaguchi, and M. Maeda,Bull. Chem. Soc. Jpn. 49, 701 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakita, H., Johansson, G., Sandström, M. et al. Structure determination of zinc iodide complexes formed in aqueous solution. J Solution Chem 20, 643–668 (1991). https://doi.org/10.1007/BF00650714

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650714

Key words

Navigation