Skip to main content
Log in

Volumes and compressibilities of pentanol in aqueous alkyltrimethylammonium bromide solutions at different temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Speed of sound and density properties of ternary water-tetradecyltrimethylammonium bromide-pentanol system at 15, 25 and 35°C and of water-hexadecyltrimethylammonium bromide-pentanol system at 25, 35 and 45°C were measured at fixed alcohol concentration as a function of surfactant concentration. The apparent molar volumes Vϕ,R and isentropic compressibilities K Sϕ,R of pentanol in micellar solutions as a function of the surfactant concentration show irregular behavior which depends on the alkyl chain length of the surfactant and tends to disappear with increasing temperature. These anomalies are ascribed to micellar transitions. For both surfactants at high concentrations, Vϕ,R decrease and the magnitude of the change seems to depend on the type of densimeter used. This observation is tentatively explained in terms of a correlation between the micellar structure and features of the densimeter. From this work and literature data, the apparent molar isothermal compressibilities K Tϕ,R of the alcohol in micellar solutions were calculated at 25°C. Vϕ,R , K Sϕ,R and K Tϕ,R are interpreted in terms of the distribution constant of the alcohol between the aqueous and the micellar phases and of the apparent molar property of the alcohol in the micellar and the aqueous phases. For a given surfactant increasing the temperature increases Vϕ,R and K Sϕ,R in the micellar phase while the distribution constant is weakly dependent. At a given temperature, an increase in the alkyl chain length of the surfactant increases the apparent molar volume and slightly changes the apparent molar compressibility of the alcohol in the micellar phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. De Lisi, V. Turco Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986).

    Google Scholar 

  2. R. De Lisi, S. Milioto, and R. Triolo,J. Solution Chem. 17, 673 (1988).

    Google Scholar 

  3. R. De Lisi, S. Milioto, M. Castagnolo, and A. Inglese,J. Solution Chem. 16, 373 (1987).

    Google Scholar 

  4. R. De Lisi, S. Milioto, and V. Turco Liveri,J. Colloid Interface Sci. 117, 64 (1987).

    Google Scholar 

  5. R. De Lisi, and S. Milioto,J. Solution Chem. 17, 245 (1988).

    Google Scholar 

  6. S. Milioto, D. Romancino, and R. De Lisi,J. Solution Chem. 16, 943 (1987).

    Google Scholar 

  7. R. De Lisi and S. Milioto,J. Solution Chem. 16, 676 (1987).

    Google Scholar 

  8. R. De Lisi, S. Milioto, and R. E. Verrall,J. Solution Chem. 19, 97 (1990).

    Google Scholar 

  9. F. Quirion and J. E. Desnoyers,J. Colloid Interface Sci. 112, 565 (1986).

    Google Scholar 

  10. M. Iqbal and R. E. Verrall,J. Phys. Chem. 91, 967 (1987).

    Google Scholar 

  11. J. E. Desnoyers and Philip,Can. J. Chem. 50, 1094 (1972).

    Google Scholar 

  12. G. S. Kell,J. Chem. Ing. Data 12, 66 (1967).

    Google Scholar 

  13. R. De Lisi, S. Milioto, and R. E. Verrall,J. Solution Chem. 19, 665 (1990).

    Google Scholar 

  14. G. Lindblom, B. Lindman, and L. Mandell,J. Colloid Interface Sci. 42 400 (1973).

    Google Scholar 

  15. P. Ekwall, L. Mandell, and P. Solyom,J. Colloid Interface Sci. 35, 519 (1971).

    Google Scholar 

  16. H. Nery, N. Kamenka, M. C. Puyal, R. Rymden, and P. Stilbs,J. Phys. Chem. 88, 5048 (1980).

    Google Scholar 

  17. F. Quirion and J. E. Desnoyers,J. Colloid Interface Sci. 115, 176 (1987).

    Google Scholar 

  18. R. De Lisi and V. Turco Liveri,Gazzetta Chim. Ital. 13, 371 (1983).

    Google Scholar 

  19. C. Treiner,J. Colloid Interface Sci. 93, 33 (1983).

    Google Scholar 

  20. R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Colloid Interface Sci. 80, 208 (1981).

    Google Scholar 

  21. P. Mukerjee,Adv. Colloid Interface Sci. 1, 241 (1967).

    Google Scholar 

  22. R. De Lisi, E. Fisicaro, and S. Milioto,J. Solution Chem. 17, 1015 (1988).

    Google Scholar 

  23. R. F. Tuddenham and A. E. Alexander,J. Phys. Chem. 66, 1839 (1962).

    Google Scholar 

  24. M. T. Bashford and E. M. Woolley,J. Phys. Chem. 89, 3173 (1985).

    Google Scholar 

  25. D. F. Evans and P. J. Wightman,J. Colloid Interface Sci. 86, 515 (1982).

    Google Scholar 

  26. R. De Lisi, C. Genova, R. Testa, and V. Turco LiveriJ. Solution Chem. 13, 121 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lisi, R., Milioto, S. & Verrall, R.E. Volumes and compressibilities of pentanol in aqueous alkyltrimethylammonium bromide solutions at different temperatures. J Solution Chem 19, 639–664 (1990). https://doi.org/10.1007/BF00647386

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647386

Key words

Navigation