Skip to main content
Log in

Mass spectrometer-wall probe diagnostic of Ar discharges containing SF6 and/or O2: Reactive ions in etching plasmas

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Positive and negative ions of Ar/SF6 and Ar/SF6/O2 plasmas (etching plasmas) and of Ar/O2 plasmas (cleaning plasmas) in Pyrex tubes have been investigated using a mass spectrometer-wall probe diagnostic technique. The measurement of negative ions proved to be a very sensitive method for the detection of wall material. In etching plasmas with small admixtures of SF6, oxygen was found as the only representative of wall material. At larger amounts of SF6, silicon could be detected. In cleaning plasmas with small admixtures of O2 applied to a previously etched Pyrex surface, fluorine was found, indicating the reversal of fluoridation by oxygenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chapman,Glow Discharge Processes, Wiley, New York (1980), Chapter 7.

    Google Scholar 

  2. E. Kay, J. Coburn, and A. Dilks, inPlasma Chemistry III (Topics in Current Chemistry No. 94, S. Verpek and M. Venugopalan, eds.), Springer-Verlag, Heidelberg (1980).

    Google Scholar 

  3. E. J. Goeltals,Sulfur-Containing Polymers (Topics in Sulfur Chemistry No. 3, A. Senning, ed.), George Thieme, Stuttgart (1977).

    Google Scholar 

  4. J. J. Wagner, and W. W. Brandt,Proc. IVth Intern. Symp. Plasma Chemistry, S. Veprek and J. Hertz, eds., Zürich (1979), p. 120.

  5. K. M. Eisele,J. Electrochem. Soc. 128, 123 (1981).

    Google Scholar 

  6. H. J. Emeléus and B. Tittle,J. Chem. Soc., 1644 (1963).

  7. G. Bruno, P. Capezzuto, and F. Cramarossa,J. Fluorine Chem. 14, 115 (1979).

    Google Scholar 

  8. G. Bruno, P. Capezzuto, F. Cramarossa, R. d'Agostino. G. Latrofa, and E. Molinari,Proc. IVth Intern. Symp. Plasma Chemistry, S. Veprek and and J. Hertz, eds., Zürich (1979), p. 460.

  9. R. d'Agostino and D. L. Flamm,J. Appl. Phys. 52, 162 (1981).

    Google Scholar 

  10. J. J. Wagner and W. W. Brandt,Plasma Chem. Plasma Process. 1, 201 (1981).

    Google Scholar 

  11. J. W. Coburn,Plasma Chem. Plasma Process. 2, 1 (1982).

    Google Scholar 

  12. W. Coburn and H. F. Winters,J. Vac. Sci. Technol. 16, 391 (1979).

    Google Scholar 

  13. C. J. Mogab, A. C. Adams, and D. L. Flamm,J. Appl. Phys. 49, 3796 (1978).

    Google Scholar 

  14. G. K. Vinogradov, P. I. Nevzorov, L. S. Polak, and D. I. Slovetsky,Vacuum 32, 529 (1982).

    Google Scholar 

  15. D. L. Flamm, U. M. Donnelly, and J. A. Mucha,J. Appl. Phys. 52, 3633 (1981).

    Google Scholar 

  16. T. J. Chuang,J. Appl. Phys. 51, 2614 (1980).

    Google Scholar 

  17. H. F. Winters and J. W. Coburn,Appl. Phys. Lett. 34, 70 (1979).

    Google Scholar 

  18. J. W. Coburn and H. F. Winters,J. Appl. Phys. 50, 3189 (1979).

    Google Scholar 

  19. U. Gerlach-Meyer, J. W. Coburn, and E. Kay,Surf. Sci. 103, 177 (1981).

    Google Scholar 

  20. Y.-Y. Tu, T. J. Chuang, and H. F. Winters,Phys. Rev. B 23, 823 (1981).

    Google Scholar 

  21. J. J. Hanak and J. P. Pellicane,J. Vac. Sci. Technol. 13, 406 (1976).

    Google Scholar 

  22. J. J. Cuomo, R. J. Gambino, J. M. E. Harper, J. D. Kuptsis, and J. C. Webber,J. Vac. Sci. Technol. 15, 281 (1978).

    Google Scholar 

  23. V. M. Atamanov, A. A. Ivanov, G. B. Levadnyi, Yu. F. Nasedkin, Yu. V. Sereda, A. A. Serov, S. Klagge, and M. Maass,Proc. Vth Intern. Symp. Plasma Chemistry, B. Waldie and G. A. Farnell, eds., Edinburgh (1981), p. 336.

  24. H. G. Lergon and K. G. Müller,Proc. IIIrd Intern. Symp. Plasma Chemistry, P. Fauchais, ed., Limoges (1977), p. G.3.8.

  25. H. G. Lergon and K. G. Müller,Proc. IVth Intern. Symp. Plasma Chemistry, S. Veprek and J. Hertz, eds., Zürich (1979), p. 34.

  26. H. G. Lergon and K. G. Müller,Proc. Symp. Atomic and Surface Physics, W. Lindinger, F. Howorka, and F. Egger, eds., Maria Alm/Sbg., Austria (1980), p. 192.

    Google Scholar 

  27. H. G. Lergon and K. G. Müller,Z. Naturforsch. Teil A 32, 1093 (1977).

    Google Scholar 

  28. H. F. Winters,J. Appl. Phys. 49, 5165 (1978).

    Google Scholar 

  29. A. Rutscher,Proc. Symp. Atomic and Surface Physics, F. Howorka, W. Lindinger, and T. D. Märk, eds., Maria Alm/Salzburg (1984), p. 373.

  30. H. G. Lergon and K. G. Müller,J. Phys. 40, C7–821 (1979).

    Google Scholar 

  31. H. Helm, T. D. Märk, and W. Lindinger,Pure Appl. Chem. 52, 1739 (1980).

    Google Scholar 

  32. J. W. Coburn and E. Kay,Proc. VIIth Intern. Vac. Congr. and IIIrd Intern. Conf. Solid Surfaces, Vienna (1977), p. 1257.

  33. S. Gourrier and M. Bacal,Plasma Chem. Plasma Process. 1, 217 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lergon, H.G., Venugopalan, M. & Müller, K.G. Mass spectrometer-wall probe diagnostic of Ar discharges containing SF6 and/or O2: Reactive ions in etching plasmas. Plasma Chem Plasma Process 4, 107–118 (1984). https://doi.org/10.1007/BF00647191

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647191

Key words

Navigation