Skip to main content
Log in

Heat capacities, volumes and solubilities of pentanol in aqueous alkyltrimethylammonium bromides

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent molar heat capacities and volumes of pentanol, 0.05m in decyl-, tetradecyl- and hexadecyltrimethylammonium bromides micellar solutions, were measured at 25°C. They were assumed to approach the standard infinite dilution values and rationalized by means of previously reported equations following which the distribution constant between the aqueous and the micellar phase, heat capacity, and volume of pentanol in both phases are simultaneously derived. The present results show that the volume of the micellar core does not seem to have a significant effect on the apparent molar volume and heat capacity of pentanol in the micellar phase and on the free energy of transfer of pentanol from the aqueous to the micellar phase. We report an equation correlating the free energy of transfer of alcohols in alkyltrimethylammonium bromides as a function of the number of carbon atoms in the alcohol and surfactant alkyl chain. Also, the apparent molar heat capacities of pentanol in micellar solutions as a function of surfactant concentration show evidence of two maxima, which, by increasing the alkyl chain length of surfactant display an opposite dependence on concentration. The second maximum can be attributed to a sphere to rod transition. The second transition was also found in the case of butoxyethanol in hexadecyltrimethylammonium bromide. It is more difficult to explain the nature of the first maximum although an attempt is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lindblom, B. Lindman, and L. Mandell,J. Colloid Interf. Sci. 42, 400 (1973).

    Google Scholar 

  2. P. Ekwall, L. Mandell, and P. Solyom,J. Colloid Interf. Sci. 35, 519 (1971).

    Google Scholar 

  3. K. G. Gotz and K. Heckmann,J. Colloid Sci. 13, 206 (1958).

    Google Scholar 

  4. K. G. Gotz and K. Heckmann,Z. Physik. Chem. 20, 42 (1959).

    Google Scholar 

  5. F. Quirion and J. E. Desnoyers,J. Colloid Interf. Sci. 112, 565 (1986).

    Google Scholar 

  6. C. Treiner, A. K. Chattopadhyay, and R. Bury,J. Colloid Interf. Sci. 104, 569 (1985).

    Google Scholar 

  7. F. Quirion and J. E. Desnoyers,J. Colloid Interf. Sci. 115, 176 (1987).

    Google Scholar 

  8. P. Lianos and R. Zana,J. Colloid Interf. Sci. 101, 587 (1984).

    Google Scholar 

  9. R. De Lisi and S. Milioto,J. Solution Chem. 16, 767 (1987).

    Google Scholar 

  10. R. De Lisi and S. Milioto,Colloids and Surfaces (submitted).

  11. J. H. Hogan, R. A. Engel, and H. F. Stevenson,Anal. Chem. 42, 249 (1970).

    Google Scholar 

  12. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 361 (1971).

    Google Scholar 

  13. M. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  14. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  15. R. De Lisi, V. Turco Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986).

    Google Scholar 

  16. R. De Lisi, C. Ostiguy, G. Perron, and J. E. Desnoyers,J. Colloid Interf. Sci. 71, 147 (1979).

    Google Scholar 

  17. J. E. Desnoyers, R. De Lisi, and G. Perron,Pure and Appl. Chem. 52, 433 (1980).

    Google Scholar 

  18. R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Colloid Interf. Sci. 80, 208 (1981).

    Google Scholar 

  19. M. Mansson, P. Sellers, G. Stridh, and S. Sunner,J. Chem. Thermodyn. 8, 1081 (1976).

    Google Scholar 

  20. D. Mirejovsky and E. M. Arnett,J. Am. Chem. Soc. 105, 1112 (1983).

    Google Scholar 

  21. J. T. Edward, P. G. Farrell, and F. Shahidi,Can. J. Chem. 58, 2887 (1979).

    Google Scholar 

  22. R. De Lisi, C. Genova, R. Testa, and V. Turco Liveri,J. Solution Chem. 13, 121 (1984).

    Google Scholar 

  23. R. De Lisi, S. Milioto, M. Castagnolo, and A. Inglese,J. Solution Chem. 16, 373 (1987).

    Google Scholar 

  24. C. Treiner,J. Colloid Interf. Sci. 93, 33 (1983).

    Google Scholar 

  25. R. De Lisi, A. Lizzio, S. Milioto, and V. Turco Liveri,J. Solution Chem. 15, 623 (1986).

    Google Scholar 

  26. S. Kaneshina, H. Kamaya, and I. Ueda,J. Colloid Interf. Sci. 83, 589 (1981).

    Google Scholar 

  27. R. De Lisi and S. Milioto,J. Solution Chem. 17, 245 (1988).

    Google Scholar 

  28. H. Hoiland, A. M. Blokhus, O. J. Kvammen, and S. Backlund,J. Colloid Interf. Sci. 107, 576 (1985).

    Google Scholar 

  29. G. Roux-Desgranges, A. H. Roux, and A. Viallard,J. Chim. Phys. 82, 441 (1985).

    Google Scholar 

  30. F. Reiss-Husson and V. Luzzati,J. Phys. Chem. 68, 3504 (1964).

    Google Scholar 

  31. E. Graber, J. Lang, and R. Zana, Kolloid-Z.Z.Polym. 238, 470 (1970).

    Google Scholar 

  32. B. Lindmann, N. Kamenka, M. C. Puyal, R. Rymden, and P. Stilbs,J. Phys. Chem. 88, 5048 (1984).

    Google Scholar 

  33. E. Abuin and E. A. Lissi,J. Colloid Interf. Sci. 95, 198 (1983).

    Google Scholar 

  34. P. Lianos and R. Zana,J. Colloid Interf. Sci. 84, 100 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLisi, R., Milioto, S. & Triolo, R. Heat capacities, volumes and solubilities of pentanol in aqueous alkyltrimethylammonium bromides. J Solution Chem 17, 673–696 (1988). https://doi.org/10.1007/BF00645978

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645978

Key words

Navigation