Skip to main content
Log in

Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The potential for biological transformation of 23 xenobiotic compounds by microorganisms in municipal solid waste (MSW) samples from a laboratory scale landfill reactor was studied. In addition the influence of these xenobiotic compounds on methanogenesis was investigated. All R11, 1,1 dichloroethylene, 2,4,6 trichlorophenol, dimethyl phthalate, phenol, benzoate and phthalic acid added were completely transformed during the period of incubation (> 100 days). Parts of the initially added perchloroethylene, trichloroethylene, R12, R114, diethyl phthalate, dibutyl phthalate and benzylbutyl phthalate were transformed. Methanogenesis from acetate was completely inhibited in the presence of 2,5 dichlorophenol, whereas 2,4,6 trichlorophenol and R11 showed an initial inhibition, whenafter methane formation recovered. No transformation or effect on the anaerobic microflora occurred for R13, R22, R114, 3 chlorobenzoate, 2,4,6 trichlorobenzoate, bis(2 ethyl)hexyl phthalate, diisodecyl phthalate and dinonyl phthalate. The results indicate a limited potential for degradation, of the compounds tested, by microorganisms developing in a methanogenic landfill environment as compared with other anaerobic habitats such as sewage digestor sludge and sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBP:

benzylbutylphthalate

DEHP:

bis(2 ethylhexyl) phthalate

3 CB:

3 chlorobenzoate

R22:

chlorodifluoromethane

CFC:

chlorofluorocarbon

R13:

chlorotrifluoromethane

cis1,2 DCE:

cis 1,2 dichloroethylene

DBP:

dibutyl phthalate

R12:

dichlorodifluoromethane

1,1 DCE:

1,1 dichloroethylenel

R114:

dichlorotetrafluoroethane

2,5 DCP:

2,5 dichlorophenol

DEP:

diethyl phthalate

DiDP:

diisodecyl phthalate

DMP:

Dimethyl phthalate

DNP:

dinonyl phthalate

MSW:

dunicipal solid waste

PCE:

perchloroethylene

PA:

phthalic acid

PAE:

phthalic acid esters

R11:

trichlorofluoromethane

2,4,6 TCB:

2,4,6 trichlorobenzoate

2,4,6 TCP:

2,4,6 trichlorophenol

VC:

vinylchloride

References

  • Barlaz MA, Schaefer DM & Ham RK (1989) Bacterial population development and chemical characteristics of refuse decomposition in a sanitary landfill. Appl Environ. Microbiol. 55: 55–65

    PubMed  CAS  Google Scholar 

  • Battersby NS & Wilson V (1989) Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Appl. Environ. Microbiol. 55: 433–439

    PubMed  CAS  Google Scholar 

  • Béchard G, Bisaillon J-G, Beaudet R & Sylvestre M (1990) Degradation of phenol by a bacterial consortium under methanogenic conditions. Can. J. Microbiol. 36: 573–578

    Article  Google Scholar 

  • Christensen TH, Bjerg PL, Rügge K, Albrechtsen HJ, Heron G, Pedersen JK, Foverskov A, Skov B, Würtz S & Refstrup M (1993a) Attenuation of organic leachate pollutants in groundwater. In: Sardinia 93. Proc. 4th Int. Landfill Symposium., Vol 2 (pp 1105–1116) 11–15 Oct. Sardinia, Italy: Imola: Grafiche Galeati

    Google Scholar 

  • Christensen TH, Albrechtsen HJ, Kromann A, Ludvigsen L & Skov B (1993b) The degradation of chlorinated aliphatic compounds in a sanitary landfill. In: Sardinia 93. Proc. 4th Int. Landfill Symposium., Vol 2 (pp 1087–1092) 11–15 Oct. Sardinia, Italy: Imola: Grafiche Galeati

    Google Scholar 

  • Christensen TH & Kjeldsen P (1989) Basic biochemical processes in landfills. In: Cristensen TH, Cossu R & Stegmann R (Eds) Sanitary Landfilling: Process, Technology and Environmental Impact (pp 29–49). Academic Press, London

    Google Scholar 

  • Deipser A & Stegmann R (1994) The origin and fate of volatile trace components in municipal solid waste landfills. Waste Management & Research 12: 129–139

    CAS  Google Scholar 

  • Egli C, Stromeyer S, Cook AM & Leisinger T (1990) Transformation of tetra- and trichloromethane to CO2 by anaerobic bacteria is a non-enzymatic process. FEMS Microbiol. Lett. 68: 207–212

    Article  CAS  Google Scholar 

  • Elder DJE & Kelly DJ (1994) The bacterial degradation of benzoid acid and benzenoid compounds under anarobic conditions: Unifying trends and new perspectives. FEMS Microbiol. Rev. 13: 441–468

    Article  PubMed  CAS  Google Scholar 

  • Freedman DL & Gossett JM (1989) Biological reductive dehalogenation of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55: 2144–2151

    PubMed  CAS  Google Scholar 

  • Horowitz A, Shelton DR, Cornell CP & Tiedje JM (1982) Anaerobic degradation of aromatic compounds in sediments and digested sludge. Dev. Indust. Microbiol. 23: 435–444

    CAS  Google Scholar 

  • KEMI (1990) Swedish National Chemicals Inspectorate. Appendix to Report 10/90. Descriptions of Compounds. Print Graf, Stockholm (In Swedish)

  • Knoll G & Winter J (1989) Degradation of phenol via carboxylation to benzoate by a defined, obligate syntrophic consortium of anaerobic bacteria. Appl. Microbiol. Biotechnol. 30: 318–324

    Article  CAS  Google Scholar 

  • Krone UE & Thauer RK (1992) Dehalogenation of trichlorofluoromethane (CFC-11) byMethanosarcina barkeri. FEMS Microbiol. Lett. 90: 201–204

    Article  CAS  Google Scholar 

  • Krone UE, Thauer RK, Hogenkamp HPC & Steinbach K (1991) Reductive formation of carbon monoxide from CCl4 and freons 11, 12, and 13 catalysed by corrinoids. Biochem. 30: 2713–2719

    Article  CAS  Google Scholar 

  • Lagerkvist A & Chen H (1993) Control of two step anaerobic degradation of municipal solid waste (MSW) by enzyme addition. Wat. Sci. Tech. 27: 47–56

    CAS  Google Scholar 

  • Laugwitz R (1990) Deponiegase als Quelle halogenierter Kohlenwasserstoffe. Müll und Abfall 3: 142–151

    Google Scholar 

  • Lovley DR & Woodward JC (1992) Consumption of freons CFC-11 and CFC-12 by anaerobic sediments and soils. Environ. Sci. Technol. 26: 925–929

    Article  CAS  Google Scholar 

  • Madsen J & Aamand J (1992) Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture. Appl. Environ. Microbiol. 58: 557–561

    PubMed  CAS  Google Scholar 

  • Mohn WW & Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol. Rev. 56: 482–507

    PubMed  CAS  Google Scholar 

  • O'Connor OA, Rivera MD & Young LY (1989) Toxicity and biodegradation of phthalic acid esters under methanogenic conditions. Environ. Toxicol. Chem. 8: 569–576

    Article  Google Scholar 

  • Öman C & Hynning P-Å (1993) Identification of organic compounds in municipal landfill leachates. Environ. Pollut. 80: 265–271

    Article  PubMed  Google Scholar 

  • Örlygsson J, Houwen FP & Svensson BH (1993) Anaerobic degradation of proteins and the role of methane formation in steady state thermophilic enrichment cultures. Swedish J. agric. Res. 23: 45–54

    Google Scholar 

  • Pohland FR (1991). Fundamental principles and management strategies for landfill codisposal practices. In: Sardinia 91. Proc. 3rd Int. Landfill Symposium., Vol 1 (pp. 1445–1460) 14–18 Oct. Sardinia, Italy: Imola: Grafiche Galeati

    Google Scholar 

  • Reinhart DR & Pohland FG (1991) The assimilation of organic hazardous wastes by municipal solid waste landfills. J. Indust. Microbiol. 8: 193–200

    Article  CAS  Google Scholar 

  • Shelton DR, Boyd SA & Tiedje JM (1984) Anaerobic biodegradation of phthalic acid esters in sludge. Environ. Sci. Technol. 18: 93–97

    Article  CAS  Google Scholar 

  • Shelton DR & Tiedje JM (1984) General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol. 47: 850–857

    PubMed  CAS  Google Scholar 

  • Stegmann R (1981) Beschreibung eines Verfahrens zur Untersuchung anaerober Umsetzungsprozesse von Festen Abfallstoffen im Labormaßstab. Müll und Abfall 2.

  • Vogel TM & McCarty PL (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinylchloride and carbondioxide under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080–1083

    PubMed  CAS  Google Scholar 

  • Willumsen HC, Burian-Hanssen P & Jensen PE (1988) Toxic components in biogas extracted from landfills. In: Hall ER & Hobson PN (Eds) Anaerobic Digestion, 5th Int. Symposium on Anaerobic Digestion (pp 507–512). Pergamon Press, Bologna

    Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD & Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Zhang X & Wiegel J (1990) Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl. Environ. Microbiol. 56: 1119–1127

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ejlertsson, J., Johansson, E., Karlsson, A. et al. Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions. Antonie van Leeuwenhoek 69, 67–74 (1996). https://doi.org/10.1007/BF00641613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00641613

Key words

Navigation