Skip to main content
Log in

Effects of atropine and propranolol on the respiratory, circulatory, and ECG responses to high altitude in man

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

In order to anlayse the respiratory, cardiovascular, and ECG responses to acute hypoxic hypoxia, three experimental series were carried out in a randomized manner on 11 healthy, unacclimatized volunteers at rest during standardized stepwise exposure to 6000 m (PAO2 35.2±2.9 mmHg/4.7±0.4 kPa) in a low-pressure chamber a) without (control), b) with propranolol, and c) with atropine combined with propranolol. The results, show that hypoxic hyperventilation and alveolar gases are not affected by activation of the sympatho-adrenal axis or by parasympathetic withdrawal. Sympathetic activity, however, increases heart rate, stroke volume (pulse pressure), estimated cardiac output and systolic blood pressure, whereas decreased parasympathetic activity increases heart rate and estimated cardiac output, but lowers stroke volume. The fall in peripheral resistance, observed during progressive hypoxia in all three groups, is thought to be due to hypoxia-induced depression of the vasomotor center. At altitude catecholamine secretion and vagal withdrawal synergistically account in the ECG for the R-R shortening, the relative Q-T lengthening, the elevation of the P wave and the ST-T flattening. Probable direct hypoxic effects on the heart are the increase in P-Q duration and the minor but still significant depression of the T wave. It is concluded that at altitude increased sympatho-adrenal and decreased parasympathetic activity is without effect on hypoxic hyperventilation, but accounts for most of the cardiovascular and ECG changes. Diminution of sympathetic activity and imminent vagotonia arising after acute ascent to 6000 m probably reflect hypoxia of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berne RM (1985) Some cardiovascular effects of adenosine. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: receptors and modulation of cell function. IRL Press Limited. Oxford England, pp 357–370

    Google Scholar 

  • Bibermann L, Sarma RN, Surawicz B (1971) T-wave abnormalities during hyperventilation and isoproterenol infusion. Am Heart J 81:166–174

    Google Scholar 

  • Boutellier U, Koller EA (1981) Propranolol and the respiratory, circulatory, and ECG responses to high altitude. Eur J Appl Physiol 46:105–119

    Google Scholar 

  • Boutellier U, Kündig T, Gomez U, Pietsch P, Koller EA (1987) Respiratory phase detection and delay determination for breath-by-breath analysis. J Appl Physiol 62:837–843

    Google Scholar 

  • Bühlmann A (1965) Klinische Funktionsprüfung des Herzens. Schweiz Med Wochenschr 95:1327–1332

    Google Scholar 

  • Burgess MJ, Millar K, Abildskov JA (1969) Cancellation of electrocardiogram effects during ventricular recovery. J Electrocardiol 2:101–108

    Google Scholar 

  • Claustre J, Peyrin L (1982) Free and conjugated catecholamines and metabolites in cat urine after hypoxia. J Appl Physiol 52:304–308

    Google Scholar 

  • Cunningham WL, Becker EJ, Kreuzer F (1965) Catecholamines in plasma and urine at high altitude. J Appl Physiol 20:607–610

    Google Scholar 

  • Dauchot P, Gravenstein JS (1971) Effects of atropine on the electrocardiogram in different age groups. Clin Pharmacol Ther 12:274–280

    Google Scholar 

  • Downing SE (1966) Autonomic influences on cardiac function in systemic hypoxia. In: Hatcher JD, Jennings DB (eds) Proceedings of the International Symposium on the cardiovascular and respiratory effects of hypoxia. Karger, Basel New York, pp 208–231

    Google Scholar 

  • Gellhorn E, Lambert EH (1939) The vasomotor system in anoxia and asphyxia. The University of Illinois Press, Urbana, p 62

    Google Scholar 

  • Gowdey CW (1966) The autonomous nervous system in hypoxia. In: Hatcher JD, Jennings DB (eds) Proceedings of the International Symposium on the cardiovascular and respiratory effects of hypoxia. Karger, Basel New York, pp 232–247

    Google Scholar 

  • Gravenstein JS, Ariet M, Thornby JI (1969) Atropine on the electrocardiogram. Clin Pharmacol Ther 10:660–666

    Google Scholar 

  • Greene CW, Gilbert NC (1921) Studies on the responses on the circulation to low oxygen tension. III. Changes in the pacemaker and in conduction during extreme oxygen want as shown in the human. Arch Int Med 27:517–557

    Google Scholar 

  • Grover RF (1963) Basal oxygen uptake of man at high altitude. J Appl Physiol 18:909–912

    Google Scholar 

  • Hammill SC, Wagner WW jr, Latham LP, Frost WW, Weil JV (1979) Autonomic cardiovascular control during hypoxia in the dog. Circ Res 44:569–575

    Google Scholar 

  • Hegglin R, Holzmann M (1937) Die klinische Bedeutung der verlängerten QT-Distanz (Systolendauer) im Elektrokardiogramm. Z Klin Med 132:1–32

    Google Scholar 

  • Hinderling PH, Gundert-Remy U, Schmidlin O, Heinzel G (1985) Integrated pharmacokinetics and pharmacodynamics of atropine in healthy humans II: pharmacodynamics. J Pharmacol Sci 74:711–717

    Google Scholar 

  • Hoon RS, Sharma SC, Balasubramanian V, Chadha KS, Mathew OP (1976) Urinary catecholamine excretion on acute induction to high altitude (3658 m). J Appl Physiol 41:631–633

    Google Scholar 

  • Hopff L, Huber AK, Wyss OAM (1963) Studien zur Vektorkardiographie. III. Der Nachweis des Proximitätseffektes der vorderen Brustwandelektrode beim Menschen. Arch Kreislaufforsch 40:236–251

    Google Scholar 

  • Huang SY, Alexander JK, Grover RF, Maher JT, McCullough RE, McCullough RG, Moore LG, Weil JV, Sampson JB, Reeves JT (1984) Increased metabolism contributes to increased resting ventilation at high altitude. Respir Physiol 57:377–385

    Google Scholar 

  • Koizumi K, Terui N, Kollai M, Brooks CM (1982) Functional significance of coactivation of vagal and sympathetic cardiac nerves. Proc Natl Acad Sci USA 79:2116–2120

    Google Scholar 

  • Koller EA (1962) Die Wirkung von Micoren auf Atmung und Blutdruck. Helv Physiol Acta 20:97–113

    Google Scholar 

  • Koller EA, Boutellier U, Ziegler WH (1983) Zum Einfluß der Katecholamine und von Propranolol auf die akute Höhenanpassung des Menschen. Schweiz Med Wochenschr 113:1989–1999

    Google Scholar 

  • Kumada T, Gallagher KP, Shirato K, McKown D, Miller M, Kemper WS, White F, Ross J (1980) Reduction of exercise-induced regional myocardial dysfunction by propranolol. Circ Res 46:190–200

    Google Scholar 

  • Laciga P, Koller EA (1976) Respiratory, circulatory, and ECG changes during acute exposure to high altitude. J Appl Physiol 41:159–167

    Google Scholar 

  • Laciga P, Koller EA (1978) Respiratory, circulatory, and ECG changes at 6000 m and 7000 m. Experientia 34 (Abstr):900

    Google Scholar 

  • Lepeschkin E (1957) Das Elektrokardiogramm. Theodor Steinkopff, Dresden-Leipzig, p 304

    Google Scholar 

  • Pietsch P (1984) Das rechnerunterstützte Atmungsanalysesystem des Physiologischen Institutes Zürich. Thesis, University of Zurich

  • Robinson S, Pearcy M, Brueckman FR, Nicholas JR, Miller D (1953) Effects of atropine on heart rate and oxygen intake in working man. J Appl Physiol 5:508–512

    Google Scholar 

  • Saurenmann P, Koller EA (1984) The ECG changes due to altitude and to catecholamines. Eur J Appl Physiol 53:35–42

    Google Scholar 

  • Scheer P, Albers D (1940) Ueber das P-Q Intervall im menschlichen Elektrokardiogramm. Z Kreislaufforsch 32:87–93

    Google Scholar 

  • Senges J, Henning E, Brachmann J, Pelzer D, Mizutani T, Kübler W (1980) Effects of orciprenaline on the sinoatrial and atrioventricular nodes in presence of hypoxia. J Mol Cell Cardiol 12:135–147

    Google Scholar 

  • Sjöstrand T (1956) Die pathologische Physiologie der Korrelation zwischen Herz- und Gefäßsystem. Verh Dtsch Ges Kreislaufforsch 22:143–157

    Google Scholar 

  • Thomsen JH, Wasserburger RH (1967) Effect of hyperventilation on precordial T waves of children and adolescents. Circulation 36:700–707

    Google Scholar 

  • Ury B, Gellhorn E (1939) Role of sympathetic system in reflex dilatation of pupil. J Neurophysiol 2:268–275

    Google Scholar 

  • Van Liere EJ, Stickney JC (1963) Hypoxia. University of Chicago Press, Chicago London, p 6 and p 214

    Google Scholar 

  • Weil JV, Byrne-Quinn E, Sodal IE, Kline JS, McCullough RE, Filley GF (1972) Augmentation of chemosensitivity during mild exercise in normal man. J Appl Physiol 33:813–819

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported in part by “Stiftung für wissenschaftliche Forschung an der Universität Zürich”, by “Jubiläumsspende der Universität Zürich”, and by “Theodor und Ida Herzog-Egli Stiftung”, Zürich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koller, E.A., Drechsel, S., Hess, T. et al. Effects of atropine and propranolol on the respiratory, circulatory, and ECG responses to high altitude in man. Europ. J. Appl. Physiol. 57, 163–172 (1988). https://doi.org/10.1007/BF00640657

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00640657

Key words

Navigation